Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения объектов управления первого и второго порядков. Связь между их коэффициентами и реальными характеристиками





Дифференциальное уравнение, описывающее САУ, имеет вид: уравнение САУ:

Применив преобразование Лапласа, считая начальные условия нулевыми, получим

,

где - передаточная функция по каналу управления,

- передаточная функция по каналу возмущения.

Передаточная функция системы – отношение изображения по Лапласу её выходного сигнала к изображению по Лапласу её входного сигнала при нулевых начальных условиях.

Выражение

является характеристическим многочленом системы.

Корни полинома знаменателя передаточной функции называются её полюсами, а корни полинома числителя – нулями.

Так как произволь­ный полином можно разложить на простые множители, то передаточ­ную функцию системы (звена)

всегда можно представить в виде произведения простых множителей и дробей вида

k, s, , (1.4)

Звенья, описываемые дифференциальными уравнениями 1 и 2 порядка, называют элементарными, или типовыми.

Здесь к называется передаточным коэффициентом, Т — постоянной времени и z(0 < z < 1) — коэффициентом демпфирования.

Звено с передаточной функцией W(s) = к называется пропор­циональным звеном, звено с передаточной функцией W(s) — ksдифференцирующим звеном, звено с передаточной функцией \Y(s) = = k/s — интегрирующим звеном, звено с передаточной функцией W(s) = k(Ts+ l) — форсирующим звеном (первого порядка), звено с передаточной функцией W(s) = k/(Ts+ l) — апериодическим зве­ном, звено с передаточной функцией

(0 < ϛ < 1- колебательным звеном, ϛ > 1 апериодическим звеном 2 порядка)

Существуют также звенья, которые не являются в полном смысле элементарными, но их относят к числу типовых:

Реальное дифференцирующее звено, реальное интегрирующее звено, консервативное звено, форсирующее звено 2 порядка.

В таблице приведены дифференциальные уравнения объедков управления 1,2 порядка.

Характеристика объекта могут быть получены экспериментальным путем (переходная, весовая функция, частотные характеристики). В таблице показана также связь параметров передаточной функции, получаемой из диф. уравнения, с видом переходной функции ОУ.

При этом следует учитывать, что временные характеристики интегрирующих и дифференцирующих звеньев практически не применяются.

Звено Уравнение звена Передаточная функция
Усилительное
Интегри-рующее
Апериоди-ческое
Колебательное при
Дифференци-рующее идеальное
Дифференци-рующее реальное
Запаздываю-щее






Дата добавления: 2015-04-19; просмотров: 598. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия