Топливные элементы, их виды. Кислородно-водородный ГЭ: строение, уравнение процессов, достоинства и недостатки
Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне[1] — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе. Топливный элементы осуществляют прямое превращение энергии топлива в электричество минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Естественным топливным элементом является митохондрия Основные виды ТЭ Есть различные типы ТЭ-топливных элементов. Их обычно классифицируют по используемому топливу, рабочему давлению и температуре, а также по характеру применения. классификация топливных элементов по типу электролита как среды для внутреннего переноса ионов (протонов). Электролит между электродами определяет операционную температуру и от этой температуры зависит тип катализатора. Водород считается основным источником топлива для ТЭ-топливных элементов, однако процесс преобразования топлива позволяет извлекать водород и из других его видов, включая метанол, природный газ, нефть и др. В отличии от аккумулятора и батареек, ТЭ-топливные элементы не истощается и не требует перезарядки; он работает, пока подается топливо.
Отличием ТЭ от гальванического элемента является то, что восстановитель и окислитель не заложены заранее в элемент, а непрерывно подводятся к электродам в процессе работы. В связи с этим электроды элемента в процессе работы не изменяются, и ТЭ в принципе может работать непрерывно, пока подводятся реагенты и выводятся продукты реакции, в то время как гальванические элементы могут работать ограниченное время, определенное запасом активных реагентов. Реакция окисления водорода 2H2 + O2 = 2H2O в ТЭ протекает через электроокисление водорода на аноде 2H2 + 4ОН- 4е =4H2O и электровосстановление кислорода на катоде O2 + 2H2O + 4е =4ОН- СНОВНЫЕ ПРОБЛЕМЫ ТЭ Как и любой источник тока, ТЭ характеризуются напряжением, мощностью и сроком службы. Напряжение U топливного элемента ниже ЭДС из-за омического сопротивления электролита и электродов R и поляризации катода DЕк и анода DЕа U = Eэ - IR - (DЕк + DЕа), где I - сила тока. Поляризация электродов обусловлена замедленностью процессов, протекающих на электродах, и равна разности потенциалов электрода под током ЕI и при отсутствии тока ЕI = 0 DЕ = EI - ЕI = 0. Поляризация электродов возрастает с увеличением плотности тока i, то есть тока, отнесенного к единице площади поверхности электрода S: При одном и том же токе можно снизить плотность тока и поляризацию, применяя пористые электроды, имеющие высокоразвитую поверхность (до 100 м2/г). В пористом электроде осуществляется контакт газа (реагента), электролита (ионного проводника) и электронного проводника. Процессы в пористых электродах достаточно сложны. Для ускорения реакций в пористые электроды вводят катализаторы. К катализаторам ТЭ предъявляются требования высокой активности, длительного срока службы и приемлемой стоимости. Выбор катализатора определяется как этими требованиями, так и видами ТЭ и топлива, рабочей температурой и областями применения ТЭ. Наиболее широкое использование нашли платина, палладий, никель и некоторые полупроводниковые материалы. Пористые электроды представляют собой сложную структуру, в которой протекают электрохимические реакции, подводятся и отводятся ионы и электроны, подводятся реагенты, отводятся продукты реакции и тепло. Эти процессы рассматриваются в теории пористых электродов (макрокинетике электродных процессов), которая позволяет оптимизировать их структуру и толщину [6]. В соответствии с уравнением (6) напряжение ТЭ снижается с увеличением тока. Зависимость напряжения ТЭ от тока получила название вольт-амперной характеристики. Напряжение большинства ТЭ лежит в пределах 0,8-0,9 В. Реальный КПД топливного элемента hp ниже теоретического и определяется по уравнению где np - реальное количество электронов на молекулу реагента. Величина np ниже n уравнения (5) в связи с неполным использованием реагентов и их расходом на собственные нужды установок с ТЭ. Как видно, все факторы, увеличивающие напряжение (см. уравнение (6)), повышают КПД. От напряжения также зависит и мощность Р: Р = UI,
|