Предельная норма технологического замещения
Предельная норма технологического замещения (Marginal Rate of Technical Substitution, или MRТS) одного ресурса на другой (например, труда на капитал) показывает степень замещения труда капиталом, при котором объем выпуска остается неизменным. Алгебраическое выражение, показывающее степень, в которой производитель готов сократить количество капитала в обмен на увеличение труда, достаточную для сохранения прежнего объема выпуска, имеет вид В силу отрицательного наклона кривой безразличия данное отношение всегда будет величиной отрицательной. Иногда для удобства вводят минус перед правой частью, но в большинстве случаев имеет значение абсолютная величина коэффициента. Рисунок 6.3 – Предельная норма технологического замещения Как видно на рис. 6.3, при переходе из точки А в точку В объем производства остается неизменным. Это означает, что сокращение выпуска в результате уменьшения затрат капитала ( К = К2 – К1) компенсируется увеличением выпуска за счет использования дополнительного количества труда ( L = L2 – L1). Сокращение выпуска в результате уменьшения затрат капитала равно произведению К на предельный продукт капитала, или - К*МРK Увеличение выпуска за счет использования дополнительного количества труда в свою очередь равно произведению L на предельный продукт труда, или L*MPL Таким образом, можно записать, что - К*МРK = L*MPL Запишем данное выражение по-иному: - К/ L = MPL/МРK или Производственная функция, связывающая между собой количество капитала, труда и объем выпуска, позволяет также рассчитать предельную норму технологического замещения через производную данной функции: MRТS = dK/dL Это значит, что графически в любой точке изокванты предельная степень технологического замещения равна тангенсу угла наклона касательной к изокванте в этой точке. Очевидно, что степень замещения труда капиталом не остается постоянной при движении вдоль изокванты (рис. 6.4). При перемещении вниз по кривой абсолютное значение MRTS труда капиталом убывает, так как все большее количество труда приходится использовать, чтобы компенсировать снижение затрат капитала. В дальнейшем MRTS достигает своего предела (MRTS = 0), а изокванта приобретает горизонтальный вид. Очевидно, что дальнейшее снижение затрат капитала приведет лишь к сокращению объемов выпуска. Количество капитала в точке Е - минимально допустимое для данного объема производства (аналогичным образом минимально допустимое для производства данного объема количество труда имеет место в точке А).
Рисунок 6.4 – Убывание предельной нормы технологического замещения Убывание MRTS одного ресурса другим характерно для большинства производственных процессов и характерно для всех изоквант стандартного вида. Особые случаи производственной функции (изокванты нестандартного вида) Изокванты (как и кривые безразличия) могут иметь различную конфигурацию. Совершенная взаимозаменяемость ресурсов Линейная изокванта (рис. 6.5а) предполагает совершенную замещаемостъ производственных ресурсов, так что данный выпуск может быть получен с помощью либо только труда, либо только капитала, либо с использованием различных комбинаций того и другого ресурса при постоянной норме их замещения, т. е. MRTS постоянна во всех точках изокванты. Примером может служить производство, допускающее как полную автоматизацию, так и ручное изготовление какого-либо продукта. Фиксированная структура использования ресурсов Если технологический процесс исключает замещение одного фактора на другой и требует использования обоих ресурсов в строго фиксированных пропорциях, производственная функция (карта изоквант) имеет вид латинской буквы L, как на рис. 6.5б. То есть имеет место жесткая дополняемость ресурсов. Известен лишь один метод производства данного продукта: труд и капитал комбинируются в единственно возможном соотношении, предельная норма замещения равна нулю. Такую изокванту иногда называют изоквантой леонтьевского типа, по имени американского экономиста русского происхождения В. В. Леонтьева, который положил такой тип изокванты в основу разработанного им метода затраты-выпуск, принесшего ему Нобелевскую премию по экономике. Примером подобного рода может служить работа землекопа (одна лопата и один человек) или обслуживание башенного крана (один крановщик и один кран). Увеличение количества одного из факторов без соответствующего изменения количества другого фактора невозможно, поэтому технически эффективными (оптимальными) будут лишь угловые комбинации ресурсов. Наличие нескольких вариантов использования ресурсов На рис. 6.5в показана ломаная изокванта, предполагающая наличие лишь нескольких методов производства (Р). При этом предельная норма технического замещения при движении вдоль такой изокванты сверху вниз направо убывает. Изокванта подобной конфигурации используется в линейном программировании – методе экономического анализа, разработанном двумя другими нобелевскими лауреатами – Т. Купмансом (1910-1985) и Л. В.Канторовичем (1912-1986). Непрерывная, но не совершенная замещаемость ресурсов Наконец, на рис. 6.5г представлена изокванта, предполагающая возможность непрерывной, но не совершенной замещаемости ресурсов в определенных границах, за пределами которых замещение одного фактора другим технически невозможно (или неэффективно).
Рисунок 6.5 – Возможные конфигурации изоквант Многие специалисты, особенно инженеры, предприниматели, вообще те, кого у нас принято называть производственниками, считают ломаную изокванту наиболее реалистично представляющей производственные возможности большинства современных производств. Однако традиционная экономическая теория обычно оперирует гладкими изоквантами, подобными изображенной на рис. 6.5г, поскольку их анализ не требует применения сложных математических методов. Кроме того, изокванты такого вида можно рассматривать как некую приближенную аппроксимацию ломаной изокванты. Увеличивая число методов производства и, следовательно, множество точек излома, мы можем (в пределе) представить ломаную изокванту в виде гладкой кривой.
|