Графическое изображение функции производства
Представим графически полученные нами результаты. Как видно из рис. 5.1, функция производства в своем развитии проходит три этапа. На первом этапе (при L от 0 до L3) происходит повышение отдачи переменного ресурса (т. е. средний продукт АРL растет и достигает своего максимума APmax), предельный продукта труда MPL также увеличивается и достигает своего максимального значения MPmax. Затем предельный продукт перестает расти, и, достигая точки своего максимума (иногда ее называют точкой убывания предельного продукта), начинает убывать. При этом средний продукт APL продолжает расти до своего максимального значения (в нашем примере АРL = max при L3). На втором этапе (от L3 до L4) наблюдается уменьшение отдачи переменного ресурса (т. е. средний продукт АРL убывает), предельный продукт MPL также продолжает сокращаться и достигает нуля (МР = 0 при L4). При этом объем совокупного продукта TP становится максимально (TPmax) возможным и его дальнейшее увеличение за счет прироста только переменных ресурсов уже неосуществимо. На третьем этапе (начиная с L4 и далее) предельный продукт приобретает отрицательное значение (МР < 0), а совокупный продукт ТР начинает сокращаться. Для достижения наиболее эффективных результатов и минимизации издержек фирме следует использовать переменный ресурс в объеме, соответствующем II этапу. На I этапе дополнительное использование переменного ресурса ведет к снижению средних издержек. На III этапе сокращаются совокупный объем выпуска и средние издержки (т. е. прибыльность падает). Причина подобного поведения производственной функции кроется в принципе (законе) убывания предельной отдачи: Начиная с некоторого момента времени, дополнительное использование переменного ресурса при неизменном количестве постоянного ресурса ведет к сокращению предельной отдачи, или предельного продукта. Данный закон носит универсальный характер и характерен практически для всех экономических процессов. (Русская пословица «У семи нянь дитя без глазу» прекрасно иллюстрирует данный принцип). d(APL)/dL = = 0. Изокванта и карта изоквант. Свойства изоквант В зависимости от состояния рыночного спроса фирма может выбрать один из нескольких вариантов производства. Для точного определения оптимального объема выпуска используем графический метод анализа производственной функции через изокванты и изокосты.
|