Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принцип экстремума энтропии и экстремальные распределения





В ряде случаев возникает задача определения распределения вероятностей w(x) при заданных моментах случайных величин. Например, при выборе “наилучшего” распределения вероятностей при передаче сообщений или искусственно создаваемой помехи.

Заданному ограничению всегда удовлетворяет бесконечное множество различных распределений вероятностей. Поэтому ставится задача выбора из данного множества некоторого наиболее подходящего распределения.

В качестве критерия предлагается принцип экстремума энтропии. Данная задача решается как частная задача вариационного исчисления. При этом могут быть два случая. Первый случай при заданной дисперсии, второй - при произвольной дисперсии.

Рассмотрим первый случай.

Определим вид функции плотности вероятности распределения состояний элементов сообщений w(x), которая бы обеспечивала максимальную энтропию H(X) при заданной дисперсии.

При этом имеются дополнительные условия:

(2.5)

(2.6)

Для решения задачи составим уравнение Эйлера

, (2.7)

где λ1 и λ2 - неопределенные множители;

, .

Продифференцируем уравнение (2.7) по w(x)

Приравнивая производную нулю, получим:

Примем во внимание, что , и тогда

, далее ,

или , где

(2.8)

Для исключения неизвестных λ1 и λ2 подставим выражение (2.8) в (2.5).

Для решения полученного выражения воспользуемся табличным интегралом:

Далее . Тогда (2.8) примет вид

(2.9)

Подставим (2.9) в (2.6)

При взятии интеграла учтем, что имеется соответствующий табличный интеграл

Следовательно (2.10)

Подставим (2.10) в (2.9) и окончательно получим

(2.11)

В результате получили нормальный закон распределения вероятностей.

Выводы:

1. Если задана дисперсия состояний сообщений, то сообщение обладает наибольшей информативностью (максимальной энтропией) в том случае, когда состояния элементов распределены по нормальному закону.

2. Если задана средняя мощность помехи, то последняя является наиболее эффективной (энтропия помехи максимальна), когда состояния составляющих помеху элементов распределены по нормальному закону.

Второй случай. Определим вид функции w(x), обеспечивающей максимальную энтропию сообщений при непрерывном распределении состояний элементов и произвольной дисперсии. Эта вариационная задача имеет только одно дополнительное условие.

(2.12)

Решение задачи можно получить, положив в (2.7) λ2=0

тогда уравнение (2.8) будет равно

Подставим в (2.12) и возьмем пределы (а - в), так как w(x) не зависит от x.

, откуда

Так как функция плотности вероятности w(x) не зависит от x, то она является величиной постоянной во всем интервале существования случайной величины. Пусть состояния элементов сообщений существуют в интервале [a,b], тогда искомая функция распределения равна

(2.13)

внутри интервала [a,b] и нулю вне пределов его.

Вывод. Если дисперсия состояний сообщений не ограничена, то сообщения обладают наибольшей информативностью (максимальной энтропией) в том случае, когда состояния элементов распределены по равновероятному закону.

 







Дата добавления: 2015-03-11; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия