Физика, химия и техника 1 страница
4.1. Где впервые обнаружен гелий? Французский и английский астрономы Жюль Жансен и Джозеф Норман Локьер, наблюдая солнечные протуберанцы, обнаружили в 1868 году в их спектре линию, которую не смогли определить ни по одному из известных тогда элементов. В 1871 году Локьер объяснил происхождение этой спектральной линии присутствием на Солнце неизвестного элемента и назвал его «гелий» (по-гречески «солнце»). Лишь в 1895 году английский физик и химик Уильям Рамзай открыл впервые гелий на Земле. При нагревании радиоактивного минерала клевеита он увидел в спектре выделенного газа ту же спектральную линию.
4.2. Кто и когда открыл вакуум? Честь открытия вакуума принадлежит итальянскому математику и физику Эванджелисте Торричелли (1608–1647), ученику Галилео Галилея. В 1643 году по поручению Торричелли знаменитый опыт провел итальянский физик Вивиани. Он наполнил ртутью длинную стеклянную трубку, закрытую с одного конца, и опустил ее свободным концом в чашку с ртутью. Обнаружилось, что при достаточной длине трубки уровень ртути в ней понижается, а над поверхностью ртути образуется пустота. Торричелли объяснил это явление тем, что давление атмосферы, действующее на поверхность ртути в чашке, уравновешивается весом столба ртути. Высота этого столба на уровне моря составляет около 760 миллиметров. Если длина трубки больше этого значения, над поверхностью ртути образуется пустота. Чтобы доказать, что пространство над ртутью остается пустым, Торричелли впускал в него воду, которая врывалась в это пространство «со страшным напором» и целиком его заполняла. Таким образом Торричелли отверг господствовавшее до того времени объяснение, согласно которому ртуть заполняет трубку, вода заполняет всасывающий трубопровод насосной установки и т. д., потому что «природа боится пустоты», и доказал существование атмосферного давления. Безвоздушное пространство над свободной поверхностью жидкости в закрытом сверху резервуаре называют торричеллиевой пустотой.
4.3. Какие деяния увековечили магдебургского бургомистра Отто фон Герике? Имя Отто фон Герике (1602–1686), избранного в 1646 году бургомистром немецкого города Магдебурга, давно кануло бы в Лету, если бы не его увлечение физикой. Герике был изобретательным экспериментатором и, узнав в 1650 году об открытии Торричелли, загорелся желанием лично убедиться в возможности образования пустоты. Для этой цели он заполнил винную бочку водой, подсоединил к ней насос и попытался выкачать жидкость. Как только началась откачка, ободы треснули. Опыт с более прочной бочкой закончился тем же. Третий опыт Герике провел уже с медным сосудом. Постепенно выдвигаемый из насоса поршень шел сначала легко, потом все труднее, а затем, по словам самого Герике, «внезапно, ко всеобщему ужасу, шар со страшным шумом разлетелся на мелкие куски, как если бы он был сброшен с высочайшей башни». Результатом этого эксперимента стало не только подтверждение существования вакуума, открытого Торричелли, но и изобретение воздушного насоса. Пристрастие Герике к театральности подвигнуло его на знаменитый опыт с «магдебургскими полушариями», проведенный в 1654 году в Регенсбурге в присутствии императора и князей. После того как эти две металлические полусферы плотно приложили друг к другу и из образовавшегося шара откачали воздух, их не смогли разъединить даже 16 лошадей, тянувших в противоположные стороны. Наглядно продемонстрировав существование давления воздуха, Герике в ряде других опытов установил упругость и весомость воздуха, его способность поддерживать горение, проводить звук, наличие в воздухе паров воды. Герике создал одну из первых электрических машин – вращающийся шар из серы, натираемый руками, и обнаружил явление электрического отталкивания, а также электрическое свечение. Он первым (в 1660 году) построил водяной барометр и использовал его для предсказания погоды.
4.4. Какую роль в истории науки сыграл мимолетный интерес Исаака Ньютона к астрологии? В 1663 году 20-летний Исаак Ньютон купил на ярмарке в Сторбридже книгу по астрологии, чтобы «из любопытства посмотреть, что в ней такое». Он листал ее, пока не добрался до иллюстрации, которую не мог понять, поскольку не был знаком с тригонометрией. Ньютон приобрел книгу по тригонометрии, но тут же обнаружил, что не может уразуметь приведенные в ней рассуждения, ибо не знает геометрии. Тогда он отыскал главный труд античного математика Евклида «Начала» и углубился в чтение. Спустя два года Ньютон изобрел дифференциальное исчисление.
4.5. Чем замечательны для истории физики два года: 1666 и 1905? В 1666 году, когда Исаак Ньютон учился в Кембриджском университете, эпидемия чумы заставила его уединиться в деревушке Вулсторп, где он родился. Целый год он занимал свой досуг тем, что разрабатывал дифференциальное и интегральное исчисления, доискивался до первооснов природы света и закладывал фундамент теории всемирного тяготения. В истории физики был еще только один такой год – 1905-й. В этом году Альберт Эйнштейн опубликовал в немецком журнале «Анналы физики» пять статей, три из которых навсегда вошли в историю физики как одни из величайших. В одной из них Эйнштейн (на основе введенных в 1900 году Максом Планком квантовых представлений) дал теорию фотоэффекта – явления вырывания светом электронов из вещества (именно за эту работу он был удостоен в 1921 году Нобелевской премии по физике). Вторая статья была посвящена объяснению поведения мельчайших частиц в жидкости, известному как броуновское движение. А в третьей были приведены основные положения специальной теории относительности.
4.6. Как Хаксли Уиттли, один из великих американских ученых, стал математиком? Свое образование Хаксли Уиттли начал в Йельском университете (США), где обучался игре на скрипке. После второго курса его послали в Европу для совершенствования мастерства. В Венском университете ему сказали, что в конце года он должен сдать экзамен не только по основному предмету, но и по одному «чужому» (мол, таково правило). Уиттли спросил у товарищей, какая в настоящее время самая модная наука, и ему ответили, что это квантовая механика. Он пришел на лекцию, но ни слова не понял. По ее окончании Уиттли сказал профессору, что с его лекцией не все в порядке, так как он – лучший студент Йельского университета – ничего не понял. Профессор (а это был сам Вольфганг Паули – швейцарский физик, один из создателей квантовой механики и релятивистской квантовой теории поля) ответил, что Уиттли, наверное, прекрасный скрипач, но математический анализ и линейную алгебру знает слабовато, и рекомендовал ему два учебника. Через две недели Уиттли уже начал понимать лекции профессора, а в конце семестра решил, что квантовая механика гораздо интереснее скрипки, и занялся математикой.
4.7. Какому другому великому итальянцу уподобили Энрико Ферми его коллеги после успешного запуска разработанного под его руководством первого в мире ядерного реактора? Как рассказывает в своей книге «Путеводитель по науке» Айзек Азимов, сразу после успешного запуска в 1942 году первого в мире ядерного реактора присутствовавший при этом американский физик Артур Комптон позвонил в Гарвард и сообщил о достигнутом успехе: «Итальянский навигатор снова открыл Новый Свет». Азимов обращает внимание читателя на тот факт, что Колумб, первый открывший Новый Свет итальянский навигатор, совершил это в 1492 году. Те, кто верит в магические свойства чисел, могут оценить такое редкое совпадение.
4.8. Как воздушный змей помог Бенджамену Франклину укрепить независимость США? В 1752 году американский просветитель, государственный деятель и ученый Бенджамен Франклин (1706–1790) провел знаменитый эксперимент. Во время разыгравшейся грозы он запустил воздушный змей с металлическим проводом (антенной), удерживая его посредством электропроводной шелковой нити. Стоило Франклину приблизить руку к металлическому ключу, который он привязал к шелковой нити, как тут же появлялась яркая искра. Тем самым Франклин продемонстрировал, что грозовые облака накапливают мощный электрический заряд, а молния – это электрическая «искра» между полюсами, одним из которых служит заряженное облако, а другим – земная поверхность. Франклину повезло, что он после своего смелого эксперимента остался в живых: некоторые другие исследователи, пытавшиеся повторить его, погибли на месте от прошившего их тело мощного электрического разряда. Свершение Франклина имело значение не только с точки зрения физики, посредством этого эксперимента американские колонии заявили о себе в масштабе общемировой культуры. Франклин впервые показал всему миру, что не только у европейцев, но и у жителей Нового Света есть научный потенциал, чтобы внести достойный вклад в победу эры разума. Когда четверть века спустя Франклин представлял при дворе французского короля новорожденные Соединенные Штаты Америки и просил о поддержке юного государства, то пользовался заслуженным уважением не только как политик, но и как ученый, сумевший «приручить» молнию. Таким образом, его воздушный змей помог в немалой степени укрепить независимость США.
4.9. Когда и где впервые опубликованы ньютоновские «Начала» на русском языке? Знаменитый труд Исаака Ньютона «Математические начала натуральной философии», опубликованный в 1687 году, впервые напечатан на русском языке в 1913 году в «Известиях Морской академии». Перевод с латыни выполнил преподаватель Морской академии Алексей Николаевич Крылов (1863–1945) – выдающийся математик, механик и кораблестроитель.
4.10. Кто, по мнению Альберта Эйнштейна, делает великие открытия? Исходя из собственного богатого опыта, Альберт Эйнштейн утверждал, что великие открытия делают следующим образом: подавляющее большинство людей знают, что это невозможно, а затем находится один человек, который не знает, – вот он-то и делает открытие.
4.11. Как оценивалась юридически кража электроэнергии 100 лет назад? В 1899 году суду в Ганновере (Германия) пришлось решать вопрос: составляет ли противозаконное присвоение электричества воровство или нет? Машинист Генке, состоявший при центральной электрической станции, зарядил тайно от хозяина два небольших аккумулятора и продал их. Суд не признал его виновным, хотя было доказано, что обвиняемый похитил электрическую энергию от чужой установки. В своей мотивировке суд указал, что о краже можно говорить только в том случае, когда дело идет о противозаконном присвоении чужой собственности, движимого предмета, но электричество ни в коем случае нельзя считать движимой вещью, причем даже нельзя сказать, может ли вообще электрический ток быть признан «вещью».
4.12. Какие российские ученые получили Нобелевскую премию по физике? Наша страна дала миру девять лауреатов Нобелевской премии по физике. 1958 год. Павел Алексеевич Черенков, Игорь Евгеньевич Тамм, Илья Михайлович Франк – за открытие и объяснение эффекта Вавилова – Черенкова. 1962 год. Лев Давидович Ландау – за пионерские исследования по теории конденсированных сред, в особенности жидкого гелия. 1964 год. Николай Геннадьевич Басов, Александр Михайлович Прохоров (совместно с Чарлзом Хардом Таунсом, США) – за фундаментальные исследования в области квантовой электроники, которые привели к созданию лазеров и мазеров. 1978 год. Петр Леонидович Капица – за открытия в области физики низких температур (премию с ним разделили Арно Аллан Пензиас и Роберт Вудро Вильсон, США, за открытие реликтового излучения). 2000 год. Жорес Иванович Алферов (совместно с Гербертом Кремером, США) – за развитие гетероструктур для высокоскоростной и оптической электроники (вторая половина премии была вручена Джеку Килби, США, за вклад в создании интегральных схем). 2003 год. Виталий Лазаревич Гинзбург (совместно с Алексеем Алексеевичем Абрикосовым и Энтони Леггетом, США) – за разработку теории сверхпроводимости и сверхтекучести.
4.13. Кто единственная женщина, захороненная среди великих французов в парижском Пантеоне? Эта женщина – Мария Склодовская-Кюри (1867–1934), по национальности полька. В 1903 году она (совместно с супругом Пьером Кюри и Антуаном Анри Беккерелем) была удостоена Нобелевской премии по физике – за открытие радиоактивности. В 1911 году она получила еще одну Нобелевскую премию – по химии – за открытие радия и полония, выделение радия и изучение природы и соединений этого элемента. Марии Склодовской-Кюри принадлежат работы в области радиологии и рентгенологии. В 1914 году она организовала рентгенологическое обследование раненых в госпиталях, в 1922 году стала первой женщиной, избранной членом Парижской медицинской академии. Однако радий, принесший Марии Склодовской-Кюри всемирную славу, отнял у нее жизнь. Когда много лет спустя после ее смерти лабораторный блокнот Марии поднесли к счетчику Гейгера, прибор разразился громким частым треском. Марию Склодовскую-Кюри похоронили в Со, близ Парижа, но в 1995 году ее прах по личному распоряжению президента страны Франсуа Миттерана был перезахоронен в национальный французский Пантеон – бывшую церковь Сент-Женевьев в Париже.
4.14. Кто был самым молодым нобелевским лауреатом? В истории Нобелевской премии самым молодым ее лауреатом был выдающийся английский физик Уильям Лоуренс Брэгг (1890–1971). Нобелевскую премию он получил в 1915 году за исследования структуры кристаллов с помощью рентгеновских лучей – совместно со своим отцом Уильямом Генри Брэггом (1862–1942).
4.15. Почему долголетие является иногда одним из основных условий получения Нобелевской премии? Нобелевские премии не присуждаются посмертно, а между достижением результата и признанием его научной общественностью проходят иногда многие годы. Так, американский физик Фредерик Райнес (1918–2000) осуществил экспериментальное обнаружение нейтрино в 1957 году, а Нобелевскую премию за это ему присудили в 1995 году, то есть 38 лет спустя. Еще более впечатляет пример немецкого физика Эрнста Руски (1907–1988). От создания им первого электронного микроскопа в 1932 году до присуждения за это Нобелевской премии в 1986 году прошло более полувека.
4.16. Откуда произошло название науки «физика»? Название «физика» происходит от греческого слова phýsis – природа. Первоначально, в эпоху античной культуры наука не была расчлененной и охватывала всю совокупность знаний о природных явлениях. По мере дифференциации знаний и методов исследования из общей науки о природе выделились отдельные науки, в том числе и физика.
4.17. Почему одну из крупнейших национальных академий наук Италии называют «академией рысьеглазых»? Национальная академия деи Линчеи (Accademia Nazionale dei Lincei), основанная в Италии в 1603 году, провозгласила своей целью изучение и распространение научных знаний в области физики. Название академии буквально означает «академия рысьеглазых». Тем самым ее основатели поклялись познавать природу глазами, зоркими как у рыси (в те времена этому хищнику приписывали такую остроту взгляда, которая позволяет проникать сквозь предметы). Видимо, уникальные способности рыси не ограничивались, по мнению академиков, бесподобной зоркостью, ибо над ее изображением на гербе академии расположен девиз «sagacius ista» – «быстрейшая разумом».
4.18. Почему у струнных музыкальных инструментов материал корпуса играет важную роль, а у духовых – нет? Материал корпуса не очень важен для духовых музыкальных инструментов. В отличие от струнных, у которых при звучании вибрирует корпус, в духовых инструментах звучит столб воздуха, заключенный в трубе, а из чего сделана эта труба – не так уж важно. Это известно уже лет сто, а четверть века назад американский физик Джон Колтман, чтобы лишний раз доказать эту истину, сделал флейту из бетона. Музыковеды, которым завязали глаза, не могли отличить ее звучание от звучания обычной деревянной флейты.
4.19. Как велика скорость звука? Скоростью звука называют скорость распространения звуковых волн в среде. Скорость звука зависит от механических свойств среды, в которой он распространяется. В газах скорость звука меньше, чем в жидкостях, а в жидкостях меньше, чем в твердых телах. Скорость звука в газах и парах составляет величину от 150 до 1000 метров в секунду, в жидкостях – от 750 до 2000 метров в секунду, в твердых телах – от 2000 до 6000 метров в секунду. В воздухе при нормальных условиях скорость звука равна приблизительно 330 метрам в секунду, в воде – приблизительно 1500 метрам в секунду.
4.20. Как впервые измерили скорость звука в воде? Скорость звука в воде впервые была экспериментально определена сравнительно недавно – в первой половине XIX века. Сделано это было на Женевском озере. Два физика сели в лодки и разъехались километра на три один от другого. С борта одной лодки свешивался под воду колокол, в который нужно было ударить молотком с длинной ручкой. Ручка соединялась с приспособлением для зажигания пороха в маленькой мортире, укрепленной на носу лодки. Одновременно с ударом в колокол вспыхивал порох, и яркая вспышка видна была далеко в округе. Видел вспышку и тот физик, который сидел в другой лодке и слушал звук колокола в трубу, спущенную под воду. По запозданию звука в сравнении с вспышкой определялось, сколько секунд бежал звук по воде от одной лодки до другой.
4.21. В чем состоит гидростатический парадокс? Гидростатический парадокс, заключается в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления, оказываемой ею на дно сосуда. Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в суживающихся – больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на различный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде. Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости. Объясняется гидростатический парадокс следующим. Поскольку гидростатическое давление всегда нормально к стенкам сосуда, сила давления на наклонные стенки имеет вертикальную составляющую, которая компенсирует вес излишнего против цилиндра объема жидкости в расширяющемся кверху сосуде и вес недостающего против цилиндра объема жидкости в суживающемся кверху сосуде. Гидростатический парадокс обнаружил французский физик Блез Паскаль (1623–1662).
4.22. Почему чем глубже заходишь в воду, тем меньше камешки режут ступни ног? «Виноват» в этом закон Архимеда, согласно которому на всякое тело, погруженное в жидкость, со стороны этой жидкости действует сила, равная весу вытесненной телом жидкости и направленная вверх. Чем глубже заходишь в воду, тем больший объем ее вытесняется и тем меньше сила, с которой ноги давят на дно, а значит, и на острые камешки на нем.
4.23. В чем главная ошибка людей, оказавшихся в воде и не умеющих плавать? Не умеющие плавать люди, упав в воду, часто делают роковую ошибку – поднимают руки из воды – и тем губят себя. Действие закона Архимеда приводит к тому, что всякая часть тела под водой легче, чем вне воды. Следовательно, держа руки над водой, утопающий увеличивает их вес, а значит, и вес всего своего тела, который и увлекает голову под воду. Берите пример с пловцов высокого класса. Они поднимают голову над водой только для вдоха, а выдох делают в воду, тем самым максимально увеличивая выталкивающую силу.
4.24. Может ли вода самопроизвольно подниматься вверх? Обычно вода, подчиняясь силе тяжести, течет сверху вниз. Однако при определенных обстоятельствах она способна и самопроизвольно подниматься вверх. Если поместить достаточно тонкую трубку (например, соломинку) в сосуд с водой, уровень воды в трубке поднимется выше уровня воды в сосуде. Разница между уровнями воды в сосуде и в трубке будет тем больше, чем меньше внутренний диаметр трубки. Способность воды подниматься в трубке с достаточно узким каналом – один из примеров так называемых капиллярных явлений, благодаря которым растения способны доставлять воду из почвы к ветвям и листьям. Эти же явления помогают крови циркулировать в человеческом теле, особенно в капиллярах – мельчайших кровеносных и лимфатических сосудах.
4.25. Почему льющаяся струйка воды заметно сужается книзу? Данный эффект обусловлен двумя причинами. Первая состоит в наличии сил межмолекулярного взаимодействия в жидкостях, вторая – в том, что свободное падение тел происходит с ускорением. Благодаря силам межмолекулярного взаимодействия льющаяся струйка остается неразрывной, вследствие чего в единицу времени через ее сечение внизу и вверху проходят одинаковые объемы воды. А поскольку скорость растет, диаметр струйки уменьшается.
4.26. Что такое фигуры Хладни? Фигуры Хладни – это «акустические фигуры», образуемые скоплениями мелких частиц (например, сухого песка) вблизи узловых линий на поверхности колеблющейся пластинки или подобной ей механической системы. Названы они по имени обнаружившего их в 1787 году немецкого физика Эрнеста Хладни (1756–1827). В случае круглой пластинки узловые линии могут быть круговыми или радиальными. В случае прямоугольной или треугольной пластинки они имеют направление, параллельное сторонам или диагоналям. Меняя точки закрепления и места возбуждения, можно получить разнообразные фигуры, соответствующие различным собственным колебаниям пластинки. Фигуры Хладни применяются для изучения собственных частот диафрагм телефонов, микрофонов, громкоговорителей.
4.27. Кто и как впервые показал, что воздух имеет вес? Первым это сделал великий итальянский физик, механик и астроном Галилео Галилей (1564–1642), причем двумя способами. В первом, качественном, эксперименте Галилей, достигнув термическим путем разрежения воздуха в колбе с длинным горлышком, тщательно закрытым пробкой, убедился, что если пустить этот сосуд плавать в воде, то он погружается меньше, чем в том случае, когда воздух не был разрежен. В других, количественных, экспериментах Галилей с помощью насоса закачивал во флягу избыточный воздух помимо обычно находящегося в ней и измерял увеличение веса фляги. С помощью остроумных уловок Галилей измерил объем воздуха, нагнетенного во флягу, и на основании этого результата определил отношение удельного веса воздуха к удельному весу воды. Он получил значение 1:400. Если сопоставить это значение с истинным (1:773) и учесть, какими средствами тогда располагал Галилей, то точность его измерений представляется замечательной.
4.28. Чем объясняется различие берегов рек, текущих в направлении меридиана? Реки, текущие в направлении меридиана в Северном полушарии, подмывают правые берега, а в Южном – левые. Это явление впервые объяснил в 1857 году русский естествоиспытатель Карл Максимович Бэр (1792–1876). Кстати, по основной своей специальности он был не физиком, а биологом (его считают основателем эмбриологии.) Закон Бэра объясняет подмыв берегов рек влиянием суточного вращения Земли, вследствие которого на частицы речной воды действует ускорение Кориолиса, направленное вправо по отношению к скорости движения в Северном полушарии и влево – в Южном. Поскольку соответствующие берега препятствуют отклонению потока, река их подмывает. На экваторе ускорение Кориолиса равно нулю, а наибольшее его значение – у полюсов, поэтому закон Бэра сильнее сказывается в средних и высоких широтах. Действие закона прямо пропорционально массе движущейся воды и ясно заметно только в долинах крупных рек, почти не проявляясь на малых реках. Примером, подтверждающим закон Бэра, может служить строение берегов рек Днепра, Дона, Волги, Оби, Иртыша и Лены. Дунай и Нил также в большей части своего течения имеют высокий правый берег и низкий левый. В Южном полушарии реки с крутыми левыми берегами имеются в Новой Зеландии и в Южной Америке.
4.29. Насколько вес тела на экваторе Земли отличается от веса этого же тела на полюсах? Вес любого физического тела зависит от того, на какой географической широте оно находится. Обусловлено это совместным действием двух факторов: несферичности (сплюснутости у полюсов) нашей планеты и ее суточным вращением. С увеличением географической широты основная составляющая веса (гравитационное притяжение, определяемое расстоянием между центрами масс Земли и взвешиваемого тела) увеличивается, а центробежный эффект, приводящий к снижению веса, уменьшается. Таким образом, любое тело имеет минимальный вес на экваторе, максимальный – на Северном полюсе (на Южном полюсе простирается возвышенность, а с удалением от центра Земли сила тяжести ослабевает). Разница между указанными минимальным и максимальным значениями веса тела составляет приблизительно 0,5 процента. Товар, весящий на экваторе тонну, прибавил бы в весе 5 килограммов, если бы его доставили на Северный полюс. При переносе вещей на полюс с других широт прибавка веса меньше, однако для крупных грузов она все же может выражаться внушительными числами. Так, груз морского судна, весящий в средних широтах 20 тысяч тонн, прибавил бы в весе 50 тонн, если бы это судно добралось до Северного полюса. Груз самолета, весящий в Москве 24 тонны, после посадки этого самолета на Северном полюсе стал бы тяжелее на 50 килограммов. Обнаружить такие «прибавки» можно только при помощи пружинных весов, потому что на весах рычажных гири тоже становятся соответственно тяжелее.
4.30. Что такое первая космическая скорость? Первой космической называют минимальную скорость, которую нужно сообщить любому физическому телу (например, космическому аппарату), находящемуся в гравитационном поле небесного объекта (например, планеты или звезды), чтобы это тело стало спутником небесного объекта. На поверхности Земли (на уровне моря) первая космическая скорость равна 7,91 километра в секунду (при этом Земля считается абсолютно гладкой и лишенной атмосферы). С увеличением расстояния от притягивающего объекта первая космическая скорость уменьшается. Так, на высоте 300 километров над поверхностью Земли (уровнем моря) первая космическая скорость равна 7,73 километра в секунду, на высоте 1000 километров – 4,94 километра в секунду. Первая космическая скорость на поверхности Луны равна 1,68 километра в секунду.
4.31. Что такое вторая космическая скорость? Минимальную скорость, которую нужно сообщить физическому телу (например, космическому аппарату), чтобы оно могло преодолеть гравитационное притяжение небесного объекта (например, планеты или звезды) и навсегда покинуть сферу его гравитационного действия, называют параболической скоростью (тело, имеющее такую скорость, движется по параболической траектории). Параболическая скорость уменьшается с увеличением расстояния от небесного объекта. Параболическую скорость у поверхности небесного объекта называют второй космической скоростью. Для Земли вторая космическая скорость равна 11,18 километра в секунду. Параболическая скорость на высоте 300 километров над поверхностью Земли (уровнем моря) равна 10,93 километра в секунду, на высоте 1000 километров – 6,98 километра в секунду. Для Солнца вторая космическая скорость равна 617,7 километра в секунду, а параболическая скорость на расстоянии 1 астрономической единицы от нашего светила (средний радиус земной орбиты) – 42,1 километра в секунду. Для самой большой планеты Солнечной системы (Юпитера) вторая космическая скорость равна 59,5 километра в секунду, для самой маленькой (Меркурия) – 4,2 километра в секунду.
4.32. Чему равна третья космическая скорость? Третьей космической называют минимальную скорость, которую нужно сообщить телу (например, космическому аппарату) вблизи поверхности Земли, чтобы оно могло, преодолев гравитационное притяжение Земли и Солнца, навсегда покинуть Солнечную систему. Третья космическая скорость равна приблизительно 16,6 километра в секунду (при запуске на высоте 200 километров над земной поверхностью), при этом направление скорости тела относительно Земли должно совпадать с направлением скорости орбитального движения Земли.
4.33. Что изучает классическая механика? Классическая механика изучает движение макроскопических тел со скоростями, малыми по сравнению со скоростью света. В основе классической механики лежат законы Ньютона. Движение микрочастиц (способ описания и законы движения) в заданных внешних полях изучает квантовая механика, а законы механического движения тел (частиц) при скоростях, сравнимых со скоростью света, изучает релятивистская механика, основанная на специальной теории относительности.
|