Студопедия — Физика, химия и техника 5 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физика, химия и техника 5 страница






Международная система единиц – система единиц физических величин, принятая 11-й Генеральной конференцией по мерам и весам в 1960 году. Сокращенное обозначение системы – SI (франц. Systeme International, в русской транскрипции – СИ). Международная система единиц содержит 7 основных единиц: длины – метр, массы – килограмм, времени – секунда, силы электрического тока – ампер, термодинамической температуры – кельвин, силы света – кандела, количества вещества – моль. При расчетах, если значения всех величин выражены в единицах СИ, в формулы не требуется вводить переводные коэффициенты, зависящие от выбора единиц.

 

4.131. Какие меры длины использовали в России до введения метрической системы мер?

До введения метрической системы мер в России для измерения длины использовали следующие единицы: миля (7 верст) = 7,4676 километра; верста (500 саженей) = 1,0668 километра; сажень (3 аршина = 7 футов = 100 соток) = 2,1336 метра; сотка = 21,336 миллиметра; аршин (4 четверти = 16 вершков = 28 дюймов) = 711,2 миллиметра; четверть (4 вершка) = 177,8 миллиметра; вершок = 44,45 миллиметра; фут (12 дюймов) = 304,8 миллиметра; дюйм (10 линий) = 25,4 миллиметра; линия (10 точек) = 2,54 миллиметра; точка = 254 микрометра.

 

4.132. Какие меры вместимости использовали в России до введения метрической системы мер?

До введения метрической системы мер в России для измерения вместимости использовали следующие единицы: ведро = 12,299 литра; четверть (для сыпучих тел) = 209,91 литра; четверик (8 гарнцев = 1/8 четверти) = 26,2387 литра; гарнец = 3,27984 литра.

 

4.133. Какие меры массы и веса использовали в России до введения метрической системы мер?

До введения метрической системы мер для измерения массы и веса в России использовали следующие единицы: берковец (10 пудов) = 163,805 килограмма; пуд (40 фунтов) = 16,3805 килограмма; фунт (32 лота = 96 золотников) = 409,512 грамма; лот (3 золотника) = 12,7973 грамма; золотник (96 долей) = 4,26575 грамма; доля = 44,4349 миллиграмма. Единицы веса (силы) совпадали с единицами массы.

 

4.134. Что такое кабельтов?

Кабельтов – применяемая моряками всех стран внесистемная единица длины, равная 185,2 метра (0,1 морской мили).

 

4.135. Благодаря чему рожковое дерево дало миру две единицы массы?

Твердые плоские бурые семена культивируемого издавна в Средиземноморье рожкового дерева (Ceratonia siliqua) по весу почти не отличаются друг от друга, а потому древние ювелиры и аптекари использовали их в качестве природных гирек. У древних римлян существовало 22 единицы веса. Самые маленькие из них – силиква и гран (или гранула) – равнялись соответственно 0,189 и 0,057 грамма. С древности и до наших дней аптекари измеряли гранами сильнодействующие вещества, например яды, а ювелиры – силиквами вес драгоценных камней и золота (позднее силикву стали именовать каратом). На весах же в качестве гирь использовали семена рожкового дерева. Гран и карат сохранились и до наших дней, только несколько «потяжелели». В системе английских мер (употребляется в Великобритании, США, Канаде и некоторых других странах) и сегодня применяют гран, равный 64,8 миллиграмма. А метрический карат, установленный 4-й Генеральной конференцией по мерам и весам в 1907 году, равен 200 миллиграммам.

 

4.136. Что такое килограмм и чему равно его эталонное значение?

Килограмм – единица массы, одна из семи основных единиц Международной системы единиц (СИ). Килограмм равен массе международного прототипа, хранимого в Международном бюро мер и весов (в Севре, близ Парижа). При создании в XVIII веке метрической системы мер килограмм определили как массу 1 кубического дециметра воды при температуре ее наибольшей плотности (4 градуса по Цельсию), однако прототип килограмма в 1799 году выполнили в виде цилиндрической гири из платины. Масса прототипа килограмма оказалась приблизительно на 0,028 грамма больше массы 1 кубического дециметра воды. В 1889 году в качестве международного прототипа килограмма была утверждена гиря, изготовленная из платиноиридиевого сплава (90 процентов платины и 10 процентов иридия) и имеющая форму цилиндра диаметром и высотой 39 миллиметров.

 

4.137. Что такое метр и чему равно его эталонное значение?

Метр – единица длины, одна из семи основных единиц Международной системы единиц (СИ). По первому определению, принятому во Франции в 1795 году, метр равнялся одной десятимиллионной части четверти длины Парижского меридиана, его размер был определен на основе геодезических и астрономических измерений. Первый эталон метра изготовили в 1799 году в виде концевой меры длины – платиновой линейки с расстоянием между концами, равным принятой единице длины. Он получил наименование «метр архива», или «архивный метр». Однако, как оказалось, определенный таким образом метр не мог быть вновь воспроизведен из-за отсутствия точных данных о фигуре Земли и значительных погрешностей геодезических измерений. В 1872 Международная метрическая комиссия приняла решение об отказе от «естественных» эталонов длины и о принятии архивного метра в качестве исходной меры длины. По нему изготовили эталон в виде штриховой меры длины – бруса из сплава платины (90 процентов) и иридия (10 процентов). Эталон метра и две его контрольные копии хранятся в Севре (Франция) в Международном бюро мер и весов. Однако рост требований к точности линейных измерений и необходимость создания воспроизводимого эталона стимулировали исследования по определению метра через длину световой волны. В 1960 году 11-я Генеральная конференция по мерам и весам приняла новое определение метра, положенное в основу Международной системы единиц (СИ): «Метр – длина, равная 1650763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями 2p10 и 5d5 атома криптона-86». Согласно современному определению, принятому в 1983 году 17-й Генеральной конференцией по мерам и весам, «метр – длина пути, проходимого светом в вакууме за V299 792 458 долю секунды».

 

4.138. Чему равна эталонная продолжительность секунды?

Секунда – единица времени, одна из семи основных единиц Международной системы единиц (СИ). В 1967 году на 13-й Генеральной конференции по мерам и весам принято следующее определение секунды: «Секунда – время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133». Определяемая таким образом секунда называется атомной.

 

4.139. Почему метр обозначается строчной буквой (м), а ампер – прописной буквой (А)?

Согласно правилам Международной системы единиц (СИ) обозначения единиц СИ и не входящих в СИ, наименования которых образованы по фамилиям ученых, пишутся с прописной (заглавной) буквы. Именно поэтому обозначения метра (м), секунды (с) или радиана (рад) пишутся со строчной буквы, а обозначения ампера (А), ватта (Вт) или джоуля (Дж) – с прописной.

 

4.140. Как классифицировал науки Эрнест Резерфорд?

На протяжении большей части ХХ века (с 1910-х по 1960-е годы) многие физики свысока смотрели на своих ученых собратьев, занимающихся исследованиями в других областях естествознания. Рассказывают, что, когда жена американского физика-теоретика Вольфганга Паули (1900–1958) ушла от него к химику, Паули просто не мог в это поверить. «Я еще понял бы, если бы она ушла к тореадору, – признавался он другу. – Но к химику…» Великий английский физик Эрнест Резерфорд (1871–1937) однажды сказал: «Вся наука – это либо физика, либо коллекционирование марок». Судьба «отомстила» Резерфорду за это высказывание со свойственной ей иногда иронией: в 1908 году его удостоили Нобелевской премии не по физике, а по химии.

 

4.141. Какую положительную роль сыграла алхимия?

Алхимией называют донаучное направление в развитии химии, возникшее в II–IV веках в Египте и получившее особенно широкое распространение в Западной Европе в XII–XIV веках. Своей главной задачей алхимики считали превращение (трансмутацию) неблагородных металлов в благородные с помощью воображаемого вещества – «философского камня». Среди целей алхимиков были также получение элексира долголетия, универсального растворителя и других веществ, обладающих чудесными свойствами. В процессе поиска этих чудодейственных средств алхимики открыли способы получения многих практически ценных соединений и смесей (минеральных и растительных красок, стекол, эмалей, металлических сплавов, кислот, щелочей, солей, лекарственных препаратов), а также создали приемы лабораторной работы (перегонка, возгонка, фильтрование), изобрели новые лабораторные приборы (например, печи для длительного нагревания, перегонные кубы). Египетские алхимики открыли, в частности, нашатырь. Алхимия оказала значительное влияние на средневековую культуру и способствовала становлению науки нового времени.

 

4.142. Как обозначались химические вещества до Берцелиуса?

Химики Древнего мира и Средних веков применяли для обозначения веществ, химических операций и приборов символические изображения, буквенные сокращения, а также сочетания тех и других. Семь металлов, известные в древности, изображали астрономическими знаками небесных светил: Солнца (золото), Луны (серебро), Юпитера (олово), Венеры (медь), Сатурна (свинец), Меркурия (ртуть), Марса (железо). Металлы, открытые в XV–XVIII веках (висмут, цинк, кобальт), обозначали первыми буквами их названий. Знак винного спирта (лат. spiritus vini) составлен из букв SиV Знаки крепкой водки (лат. aqua fortis, азотная кислота) и золотой водки (лат. aqua regis, царская водка, смесь соляной и азотной кислот) составлены из знака воды и прописных букв F и соответственно R. Знак стекла (лат. vitrum) образован из двух букв V – прямой и перевернутой. Попытки упорядочить старинные химические знаки продолжались до конца XVIII века. В начале XIX века английский химик Джон Дальтон (1766–1844) предложил атомы химических элементов обозначать кружками, а внутри помещать точки, черточки, начальные буквы английских названий элементов. Химические знаки Дальтона получили некоторое распространение в Великобритании и Западной Европе, пока их не вытеснила более удобная система символов. Ее предложил в 1814 году шведский химик Йенс Якоб Берцелиус (1779–1848), она же употребляется и в настоящее время. По этой системе химические знаки состоят из первой буквы или первой и одной из следующих букв латинского названия элементов. Так, углерод обозначен буквой С, кислород – О, водород – Н, сера – S, кальций – Са, кадмий – СсС, кобальт – Со, железо – Fe, натрий – Na и т. д. С помощью этих символов стало легко обозначать состав молекулы. Воду обозначают Н2О (молекула состоит из двух атомов водорода и одного атома кислорода), поваренную соль – NaCI, серную кислоту – H2S04 и т. д.

 

4.143. Какой металл наиболее распространен в земной коре?

По распространенности в природе первое место среди металлов занимает алюминий (AI): в земной коре его на 60 процентов больше, чем железа. Однако широко использовать его стали лишь во второй половине ХХ века. Дело в том, что извлечь алюминий из руд очень трудно. В 1825 году датский ученый Ханс Кристиан Эрстед (1777–1851) сумел выделить небольшое количество алюминия, но с примесями. После него многие химики безуспешно пытались очистить алюминий, но лишь в 1854 году француз Анри Этьенн Сент-Клер Девиль (1818–1881) нашел способ выделить чистый металл. Алюминий настолько химически активен, что пришлось использовать металлический натрий (еще более активный элемент), чтобы «уберечь» алюминий от вступления в реакцию с другими веществами. Алюминий, похожий по цвету на серебро, на первых порах ценился очень дорого – наравне с драгоценными металлами. С 1855 по 1890 год было получено всего 200 тонн алюминия. В то время только император Наполеон III мог позволить себе столовые приборы из алюминия и даже заказал погремушку из нового металла для своего юного наследника. А в США – в знак огромного уважения к основателю государства Джорджу Вашингтону – защитили его монумент сверху алюминиевым листом. Современный способ получения алюминия электролизом криолито-глиноземного расплава разработан в 1886 году.

 

4.144. Какое свойство аргона отражено в его названии?

Аргон (Аг) – химически инертный газ, он не вступает в химические реакции с другими веществами. Именно это свойство и отражено в названии элемента, которое происходит от греческого argys (бездеятельный). Аргон – газ без цвета, запаха и вкуса. К открытию аргона привело обнаруженное в 1892 году английским физиком Джоном Рэлеем превышение на 0,0016 грамма на литр плотности азота из воздуха по сравнению с плотностью азота, полученного из его соединений. В 1894 году Рэлей и Уильям Рамзай выделили аргон из азота воздуха.

 

4.145. Как велика масса молекулы воды?

Масса молекулы воды (H20) равна произведению молекулярной массы воды (18,016) на атомную единицу массы в граммах (1,66057/1 000 000 000 000 000 000000), то есть равна 0,03 секстиллионных доли грамма (секстиллион – число, изображаемое единицей с 21 нулем). Для более наглядного представления скажем, что в миллилитре воды содержится около 33 секстиллионов молекул. В средней снежинке около квинтиллиона (миллиарда миллиардов) молекул.

 

4.146. В чем основные достоинства и недостатки дигидрогенмонооксида?

Около десяти лет назад американский журнал «Skeptical Inquirer» опубликовал заметку о проведенном в США опросе с требованием запретить химическое соединение дигидрогенмонооксид. При опросе перечислялись следующие опасные свойства этого вещества.

1. При попадании в желудок дигидрогенмонооксид может вызвать усиленное потоотделение, в больших количествах – рвоту.

2. Дигидрогенмонооксид – основной компонент кислотных дождей.

3. В газообразной форме дигидро-генмонооксид вызывает тяжелые ожоги.

4. При случайном вдыхании этого вещества человек может погибнуть.

5. Это соединение участвует в эрозии почв, повреждает памятники архитектуры, является основной причиной коррозии металлов.

6. Дигидрогенмонооксид снижает эффективность работы автомобильных тормозов.

7. Большие количества этого вещества обнаружены в раковых опухолях и во всех болезнетворных микробах.

У идеи запрета дигидрогенмонооксида нашлись и противники, которые привели в его пользу следующие доводы.

1. Это соединение, как правило, не является синтетическим и широко распространено в природе, местами даже в виде больших скоплений.

2. Некоторые несложные меры предосторожности сводят риск от применения дигидрогенмонооксида почти к нулю.

3. Многие организмы используют дигидрогенмонооксид в своем обмене веществ, а отдельные даже приспособились жить в нем.

4. Дигидрогенмонооксид можно использовать для охлаждения, а в случае необходимости он неплохо заменяет огнетушительные смеси.

5. Дигидрогенмонооксид обладает свойствами отличного растворителя. Многие используют его в качестве универсального пятновыводителя в домашнем хозяйстве.

6. Врачи рекомендуют принимать по 50—100 миллилитров дигидрогенмонооксида при многих болезнях вместе с таблетками и порошками. Всемирная организация здравоохранения официально разрешила применение этого вещества в странах с жарким климатом для профилактики иссушения организма.

Апологеты дигидрогенмонооксида согласны, что это вещество виновато в гибели «Титаника». Действительно, в устаревших двигателях этого судна применялась газообразная форма дигидрогенмонооксида, пробоину корпусу нанесло крупное скопление его кристаллов, а на дно увлекла хлынувшая в пробоину масса жидкой формы этого соединения. Но ведь, сохраняя объективность, нельзя не видеть, что вред, наносимый дигидрогенмонооксидом, – лишь капля в море полезных достоинств.

Читатель, конечно, уже догадался, что распространенное в быту название дигидрогенмонооксида – вода (дигидроген – два атома водорода, оксид – их окисел). Однако результаты вышеупомянутого опроса оказались следующими: из 50 опрошенных 43 человека согласились подписать петицию о запрете дигидрогенмонооксида, 6 человек не имели определенного мнения, и лишь один сообразил, что скрывается за этим мудреным названием. Следует, правда, отметить, что в ходе опроса людям сообщали только доводы противников дигидрогенмонооксида, так что информация была односторонней.

 

4.147. Какие свойства водорода и кислорода отражены в их названиях?

Что водород (H) является химическим элементом, установил французский химик Антуан Лоран Лавуазье (1743–1794). Он же дал этому элементу современное название «гидроген», что в переводе с греческого означает «рождающий воду». Современное русское наименование «водород» предложил в 1824 году М. Ф. Соловьев. Название кислороду (O) дал тоже Лавуазье. Поскольку кислород входит в состав кислот, Лавуазье назвал его «оксиген», то есть «образующий кислоты»; отсюда и русское название «кислород».

 

4.148. Как в США и некоторых других странах называют вольфрам?

Впервые вольфрам (W) выделил в 1781 году шведский химик Карл Вильгельм Шееле (1742–1786) в виде вольфрамового ангидрида из минерала тунгстена и назвал элемент шеелитом. В 1783 испанские химики братья д'Элуяр выделили вольфрамовый ангидрид из минерала вольфрамита. Восстановив его углеродом, они впервые получили сам металл, который назвали вольфрамом. Минерал же вольфрамит был известен еще немецкому ученому в области горного дела и металлургии Георгу Агриколе (1494–1555) и назывался у него «Spuma lupi» – волчья пена (по-немецки Wolf – волк, Rahm – пена) в связи с тем, что вольфрамит, всегда сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово, как волк овцу»). В США и некоторых других странах вольфрам и поныне иногда называют «тунгстен» (по-шведски – тяжелый камень).

 

4.149. В честь каких городов названы элементы гафний, гольмий и лютеций?

Химические элементы гафний (Hf), гольмий (Ho) и лютеций (Lu) получили свои имена по латинским названиям городов Копенгагена (Hafnia), Стокгольма (Holmia) и Парижа (Lutetia).

 

4.150. Как давно сахар получают из свеклы?

Содержание сахара в свекле впервые обнаружил в 1747 году немецкий химик Андреас Сигизмунд Маргграф (1709–1782), исследуя срезы корней под микроскопом. Однако метод, позволяющий извлекать сахар из свеклы, был изобретен лишь в 1786 году. Развитие сахарного свекловодства началось в начале XIX века. До этого времени Европа ввозила из тропических колоний сахарный тростник. Этот импорт прекратился в период Континентальной блокады (1806–1814), проводимой наполеоновской Францией, – и получение сахара из свеклы стало важнейшим средством решения возникшей проблемы.

 

4.151. В каком изделии впервые использовали нейлон?

Первым изделием, в котором использовали нейлон, были не женские чулки, как принято думать, а зубные щетки с нейлоновой щетиной. Они появились в продаже в середине февраля 1938 года, а чулки – только в 1940 году.

 

4.152. Как впервые получили чистый кристаллический йод?

В 1811 году французский химик Бернар Куртуа (1777–1838) обратил внимание на то, что зола морских водорослей сильно разъедает медный котел. Он стал добавлять к ней различные химические реагенты и в некоторых случаях наблюдал выделение фиолетового пара, который конденсировался в виде темных блестящих пластинчатых кристаллов. Так был выделен чистый кристаллический йод (I; от греч. iOdes – похожий цветом на фиалку, фиолетовый). В 1813–1814 годах французский химик Жозеф Луи Гей-Люссак (1778–1850) и английский химик Гемфри Дэви (1778–1829) доказали, что йод является химическим элементом.

 

4.153. Как Эдисон относился к перспективам синтеза каучука?

Выдающийся русский химик Сергей Васильевич Лебедев (1874–1934) в 1910 году первым в мире получил образец синтетического (бутадиенового) каучука. В 1913 году он опубликовал работу «Исследование в области полимеризации двуэтиленовых углеводородов», которая явилась научной основой для промышленного синтеза каучука. В 1926–1928 годах Лебедев с группой сотрудников разработали метод получения натрий-бутадиенового каучука. Узнав об этих работах, знаменитый американский изобретатель Томас Алва Эдисон (1847–1931) не поверил им и заявил: «Мой собственный опыт и опыт других показывает, что вряд ли сам процесс синтеза каучука вообще когда-либо увенчается успехом». Эдисон ошибался: в 1932 году по способу, разработанному Лебедевым, в СССР впервые в мире был осуществлен синтез каучука в промышленном масштабе, в 1938 году началось производство синтетического каучука в Германии, в 1942 году – в США.

 

4.154. Какой древний символ подсказал формулу строения бензола?

В 1865 году немецкий химик-органик Фридрих Август Кекуле (1829–1896) предложил циклическую формулу строения бензола. По его собственным словам, идею этой формулы ему подсказал популярный в Древнем Египте и Древней Греции символ – змей, держащий во рту собственный хвост (пожирающий сам себя и возрождающийся из себя самого).

 

4.155. В честь каких мифических существ названы кобальт и никель?

Окись кобальта применялась в Древнем Египте, Вавилоне, Китае для окрашивания стекол и эмалей в синий цвет. Для той же цели в XVI веке в Западной Европе стали пользоваться цафрой, или сафлором, – серой землистой массой, которую получали при обжиге некоторых руд, носивших название «кобольд». Эти руды выделяли при обжиге обильный ядовитый дым, а из продукта их обжига выплавить металл не удавалось. Средневековые рудокопы и металлурги считали это проделками мифических существ – кобольдов. Получил этот металл в 1735 году шведский химик Георг Брандт (1694–1768), который назвал его «корольком кобольда». Вскоре это название было изменено на «кобольт», а затем на «кобальт» (Со). Никель (Ni) впервые получил шведский химик Аксель Фредрик Кронстедт (1722–1765). Он же предложил и название элемента – от минерала купферникеля, известного уже в XVII веке и часто вводившего в заблуждение горняков внешним сходством с медными рудами (по-немецки купфер – медь, а никель – горный дух, якобы подсовывавший горнякам вместо руды пустую породу).

 

4.156. Как изобрели бездымный порох?

В 1845 году немецкий химик Христиан Фридрих Шёнбейн (1799–1868) проводил на кухне своего дома эксперимент с использованием смеси азотной и серной кислот. Жена строго-настрого запретила ему приносить свои колбы на кухню, поэтому он спешил закончить опыт в ее отсутствие – и пролил немного едкой смеси на кухонный стол. Опасаясь скандала, он схватил первую попавшуюся под руку тряпку (это оказался хлопчатобумажный кухонный фартук), вытер лужицу со стола, а потом повесил фартук перед очагом. Высохнув, фартук взорвался. Шёнбейн сразу понял, что он получил. Название, которое он дал новому веществу, дословно переводится с немецкого как «стреляющий хлопок», ныне же химики называют его нитроцеллюлозой. Шёнбейн продал рецепт производства нового взрывчатого вещества сразу нескольким правительствам. В то время в артиллерии использовали черный порох, сажа от которого так пачкала орудия, что в перерывах между выстрелами их приходилось чистить, а уже после первых залпов поднималась такая завеса дыма, что сражаться приходилось чуть ли не вслепую. К взрывчатому веществу, дающему значительно меньше дыма, да к тому же еще и более сильному, чем черный порох, военные отнеслись с энтузиазмом. Начали строить заводы по производству нитроцеллюлозы, однако они очень быстро взрывались. Нитроцеллюлоза была слишком нетерпелива, чтобы дожидаться сражений, а потому в начале 1860-х годов от ее применения пришлось отказаться. Позднее, однако, придумали способ очистки нитроцеллюлозы от примесей, которые вызывали самопроизвольные взрывы, и нитроцеллюлоза стала безопасной в применении. А в 1884 году был изобретен первый бездымный порох – пироксилиновый. Его изготовляли из нитроцеллюлозы с содержанием азота свыше 12 процентов (пироксилина) с добавлением веществ, придающих пороху специальные свойства.

 

4.157. Сколько природных соединений содержится в чашке кофе?

В чашке кофе содержится около тысячи природных соединений. Из них лишь три процента проверены на канцерогенность.

 

4.158. Кто и как впервые обнаружил, что воздух является смесью газов?

Первым, кто понял, что воздух является смесью газов, был французский химик Антуан Лоран Лавуазье (1743–1794). В 1770-х годах он, экспериментируя, нагревал ртуть в закрытом сосуде и обнаружил, что ртуть в комбинации с воздухом образует красную пудру (окись ртути), но около 80 процентов воздуха превращается в какой-то газ. При дальнейшем нагревании это количество газа оставалось неизменным. Свеча в этом газе не горела, мышь погибала. Лавуазье решил, что воздух состоит из двух газов. Ту часть (20 процентов) воздуха, которая вступает в реакцию с ртутью и обеспечивает жизнь и горение, он назвал кислородом (O). Остальной части (80 процентов) он дал название «азот» (N), что в переводе с греческого означает «нет жизни». Оба газа были уже открыты в предыдущее десятилетие: азот в 1772 году шотландским химиком Даниелем Резерфордом (1749–1819), азот в 1774 году английским священником Джозефом Пристли (1733–1804).

 

4.159. Какая часть трудов Д. И. Менделеева посвящена собственно химии?

В представлении большинства людей Дмитрий Иванович Менделеев (1834–1907) – великий химик. Однако из всего количества его трудов собственно химии посвящено лишь 9 процентов. С гораздо большим основанием Менделеева можно было бы назвать физикохимиком, физиком или технологом, ибо каждой из этих областей он посвятил примерно 20 процентов своих работ. Немалая доля его исследований приходится на геофизику (5 процентов) и экономику (8 процентов). Менделеев был также автором фундаментальных трудов по метрологии, метеорологии, сельскому хозяйству и воздухоплаванию. Уделял он также большое внимание педагогической и общественной деятельности.

 

4.160. Почему авторство в открытии периодического закона химических элементов принадлежит именно Д. И. Менделееву, хотя свои варианты таблицы элементов предлагали (одновременно с ним и даже ранее него) другие ученые?

Открытие Д. И. Менделеевым периодического закона химических элементов датируется 17 февраля 1869 года, когда он составил таблицу, озаглавленную «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». Это был результат долголетних поисков. Однажды на вопрос, как он открыл периодическую систему, Менделеев ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». У Менделеева были предшественники. В 1862 году итальянский химик С. Канниццаро выступил с докладом о роли атомных весов элементов как важнейшем химическом инструменте. В том же 1862 году французский геолог А. де Шантуркуа установил, что элементы можно разместить в порядке возрастания атомных весов в специальной таблице, причем в вертикальные столбцы попадают элементы со сходными свойствами. Независимо от Шантуркуа к тому же выводу пришел и английский химик Д. Ньюлендс. Практически одновременно с Менделеевым предложил свой вариант таблицы элементов немецкий ученый Л. Мейер. Признание получила именно таблица Менделеева, который не только проявил смелость и умение при доказательстве своих взглядов, но и развил их дальше своих коллег. Во-первых, периодическая таблица Менделеева (названная так за периодическое чередование элементов со сходными химическими свойствами) имела более полный вид, чем аналогичные таблицы его вышеупомянутых коллег, и более сходную форму с той, которая повсеместно принята в наше время. Во-вторых, когда свойства того или иного элемента заставляли Менделеева помещать элемент вне принятой последовательности атомных весов, он смело шел на изменение формального порядка, исходя из определяющей роли химических свойств, а не атомного веса. И всякий раз он оказывался абсолютно прав. И в-третьих, самое важное: там, где в таблице не хватало элементов для заполнения ячеек, Менделеев оставил свободные места, дерзко предвосхитив будущие открытия новых элементов. Основываясь на свойствах соседей по периодической таблице, он даже довольно точно описал три элемента, которым еще только предстояло занять свободные ячейки. Здесь ему сопутствовала явная удача: все три элемента (галлий, скандий и германий) были открыты еще при жизни Менделеева, и он дожил до триумфа своей периодической системы. Периодический закон получил всеобщее признание как один из основных законов химии. Так сбылось предвидение Менделеева: «Периодическому закону – будущее не грозит разрушением, а только надстройки и развитие обещает».

 

4.161. Как в Великобритании, США и Франции называют натрий?







Дата добавления: 2015-04-19; просмотров: 423. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия