Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аппроксимация данных методом наименьших квадратов





Зная отношение длин дуг находим, что градусные величины дуг АВ, ВС, CD и DA равны 60º, 80º, 100º и 120º.

Вершина угла между прямыми АВ и CD лежит вне окружности, поэтому его градусная величина равна полуразности дуг AD и ВС, то есть 20º.

Ответ: 20º;.

Расчетно-графическая работа №2

ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

Цель – закрепить навыки разработки графического приложения Fortran для решения простейших инженерных задач; освоить приемы работы с выводом графика нескольких функций; изучить основы применения численной аппроксимации таблично заданных функций методом наименьших квадратов и решения систем линейных алгебраических уравнений методом исключений Гаусса.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Аппроксимация данных методом наименьших квадратов

Пусть в результате эксперимента получена таблица значений функции:

 

X x0 x1 x2 xn
Y y0 y1 y2 yn

 

Требуется аппроксимировать эту функцию многочленом степени m (m<n):

.

Согласно методу наименьших квадратов (МНК) ищем значения параметров , при которых сумма квадратов

принимает минимальное значение.

С учетом необходимых условий существования экстремума функции нескольких переменных получаем систему уравнений для определения неизвестных :

Доказано, что система уравнений имеет единственное решение, при котором принимает минимальное значение.

Рассмотрим частные случаи.

Случай 1. Пусть , т.е. функцию аппроксимируем многочленом первой степени:

.

Система уравнений для вычисления параметров , имеет следующий вид:

Решив систему, можем записать требуемый многочлен .

Случай 2. Пусть , т.е. функцию аппроксимируем многочленом второй степени:

.

Система уравнений для определения параметров имеет следующий вид:

Решив систему, можно записать многочлен .







Дата добавления: 2015-03-11; просмотров: 957. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия