Студопедия — Магнитные материалы. Проводниковые материалы. Полупроводниковые материалы. Диэлектрики. Классификация и основные свойства. – Катков
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Магнитные материалы. Проводниковые материалы. Полупроводниковые материалы. Диэлектрики. Классификация и основные свойства. – Катков






Магнитные материалы. Проводниковые материалы. Полупроводниковые материалы. Диэлектрики. Классификация и основные свойства.

Магнитные материалы - вещества, обладающие магнитными свойствами и изменяющие магнитное поле, в которое они помещены. Ими могут быть металлы и сплавы (гл. обр. ферромагнетики, такие, как Fe, Co, Ni, Cu, редкоземельные элементы), диэлектрики и полупроводники (ферри – и антиферромагнетики, напр. ферриты-шпинели МFe₂O₄, где М – Fe, Ni, Cо, Mn, Мg, Zn, Cu, интерметаллиды и др.). Различают магнитомягкие, магнитотвёрдые, термомагнитные, магнитооптические и магнитострикционные материалы.

Магнитомягкие материалы – это материалы с большой магнитной проницаемостью и малой коэрцитивной силой (такое размагничивающее внешнее магнитное поле напряженностью, которое необходимо приложить к ферромагнетику, предварительно намагниченному до насыщения, чтобы довести до нуля его намагниченность или индукцию магнитного поля внутри), быстро намагничиваются и быстро теряют магнитные свойства при снятии магнитного поля.

Основной магнитомягкий материал – чистое железо и его сплавы с никелем и кобальтом. Для повышения электросопротивления легируют кремнием, алюминием. Для улучшения прессуемости сплавов вводят до 1 % пластмассы, которая полностью испаряется при спекании. Пористость материалов должна быть минимальной.

Они обладают свойствами ферромагнетика (такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля) или ферримагнетика (ферримагнетики характеризуются спонтанной намагниченностью, различные подрешётки в них состоят из различных атомов или ионов, например, ими могут быть различные ионы железа, Fe2+ и Fe3+). Такие материалы также обладают высокой магнитной проницаемостью (физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе) и малыми потерями на гистерезис.

 

Петля гистерезиса

 

Магнитотвердые материалы отличаются относительно малой магнитной проницаемостью, но большой коэрцитивной силой и энергией, отдаваемой в окружающую среду. Эти материалы применяют для изготовления постоянных магнитов. К ним относятся: углеродистые, вольфрамовые, хромистые, кобальтовые стали, коэрцитивная сила которых равна 5000...13000 А/м, а остаточная индукция – 0,7...1,0 Т.

Магнитострикционные материалы обладают повышенной способностью деформироваться при намагничивании, используются в излучателях и приёмниках звука и ультразвука, преобразующих энергию магнитного поля в механическую и обратно; основные материалы – никель, сплавы никеля (пермендюр) и железа (с Аl, Ni, Pt, Ni и Co, Ni и Cr, Co и Сr), интерметаллиды редкоземельных элементов. Никель, обладающий хорошими магнитострикционными, механическими, антикоррозионными свойствами. Его недостатки — сравнительно низкая величина электросопротивления, невысокая индукция насыщения, относительно невысокая температура Кюри (360°). Сплав пермендюр - имеет большие значения магнитострикционных постоянных, высокую магнитострикцию и индукцию насыщения, Q в 4 раза больше, чем у никеля, высокие динамические характеристики в состоянии остаточного намагничивания, высокую температуру Кюри (960°). Недостатки сплава — коррозионная нестойкость и низкая пластичность.

Магнитооптические материалы. Ряд веществ, в том числе ферромагнетики, обладают магнитной оптической активностью. Наведенная магнитным полем оптическая активность проявляется и двух эффектах - Фарадея и Керра. Эффект Фарадея сводится к повороту плоскости линейной поляризации светового луча, проходящего через магнитооптическую среду. Угол поворота при направлении магнитного поля вдоль луча пропорционален напряженности магнитного поля. Нечто похожее наблюдается и при отражении линейно поляризованного луча света от поверхности ферромагнитного материала в присутствии магнитного поля. Этот эффект именуют эффектом Керра. Прошедший или отраженный свет несет, таким образом, информацию о текущем значении напряженности магнитного поля на поверхности ферромагнитного материала, зафиксированную углом поворота плоскости поляризации луча.

 

Эффект Фарадея

 

Эффект Керра

 

Термомагнитные материалы ферромагнитные сплавы с сильной зависимостью намагниченности насыщения Js от температуры Т в заданном магнитном поле. Обычно подразделяют на две группы: термомагнитные (компенсационные) сплавы (ТКС) и многослойные термомагнитные (компенсационные) материалы (ТКМ). К ТКС относятся сплавы Ni—Fe—Cr (компенсаторы), Ni—Cu (кальмаллои), Ni—Fe (термаллои). К преимуществам компенсаторов относится обратимость свойства в диапазоне температур ±70°С, хорошая воспроизводимость характеристик (в частности, зависимость Js от Т), несложная механическая обработка. ТКМ обладают рядом преимуществ по сравнению с ТКС: возможность расчёта магнитных свойств и разнообразие характеристик, достижение насыщения (Js) в слабых полях, слабая зависимость насыщения от поля.

Проводниковые материалы. Называются вещества, внутри которых в случае электростатического равновесия электрическое поле равно нулю, т.е. некомпенсированные заряды проводников локализуются в бесконечно тонком поверхностном слое, а если электрическое поле отлично от нуля, то в проводнике возникает электрический ток.

Проводниковые свойства проявляют как твердые тела, так и жидкости, а при соответствующих условиях и газы.

В электротехнике из твердых проводников наиболее широко используются металлы и их сплавы, различные модификации проводящего углерода и композиции на их основе.

Металлические проводниковые материалы подразделяются на материалы высокой проводимости и сплавы высокого сопротивления. Металлы высокой проводимости используются в тех случаях, когда необходимо обеспечить минимальные потери передаваемой по ним электрической энергии, а сплавы высокого сопротивления, наоборот, в тех случаях, когда необходима трансформация электрической энергии в тепловую.

К жидким проводникам относятся расплавы и электролиты. Если при прохождении тока через жидкие проводники на электродах не происходит выделение продуктов электролиза, то они относятся к проводникам первого рода. Расплавы ионных кристаллов и электролиты относятся к проводникам второго рода, так как при прохождении через них тока происходит перенос вещества, а на электродах выделяются продукты электролиза.

Газы и парообразные вещества становятся проводниками лишь в определенных диапазонах значений давления, температуры и напряженности электрического поля. Близка к газам по своему агрегатному состоянию особая проводящая среда — плазма.

При наличии градиентов температуры и потенциала в одном или нескольких соединенных проводниках возникает ряд термоэлектрических эффектов. Самые важные из них — эффекты Зеебека, Пельтье и Томсона.

Полупроводниковые материалы - вещества с чётко выраженными свойствами полупроводников (в широком интервале температур, включая комнатную (~ 300 К), являющиеся основой для создания полупроводниковых приборов. Удельная электрическая проводимость σ при 300 К составляет 104−10~10 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

Полупроводниковые материалы по структуре делятся на кристаллические, твёрдые, аморфные и жидкие.

Кристаллическая структура — такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причем все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.

Кристаллические полупроводниковые материалы:

Наибольшее практическое применение находят неорганические кристаллические полупроводниковые материалы, которые по химическому составу разделяются на следующие основные группы.

- Элементарные полупроводники: Ge, Si, углерод (алмаз и графит), В, α-Sn (серое олово), Те, Se.

- Соединения типа AIIIBV элементов III и V группы периодической системы.

- Соединения элементов VI группы (О, S, Se, Те) с элементами I—V групп периодической системы, а также с переходными металлами.

- Тройные соединения типа AIIBIVCV2.

- Карбид кремния SiC — единственное химическое соединение, образуемое элементами IV группы.

Некристаллические полупроводниковые материалы:

Типичными представителями этой группы являются стеклообразные полупроводниковые материалы — халькогенидные и оксидные. К первым относятся сплавы Tl, P, As, Sb, Bi с S, Se, Те, характеризующиеся широким диапазоном значений удельной электрической проводимости, низкими температурами размягчения, устойчивостью к кислотам и щелочам.

Диэлектрики - вещества, обладающие малой электропроводностью, т.к. у них очень мало свободных заряженных частиц – электронов и ионов. Эти частицы появляются в диэлектриках только при нагреве до высоких температур. Существуют диэлектрики газообразные (газы, воздух), жидкие (масла, жидкие органические вещества) и твердые (парафин, полиэтилен, слюда, керамика и т.п.).

При наложении электрического напряжения в диэлектрике, представляющем сложную электрическую систему, протекают разнообразные электрические процессы, связанные с его поляризацией, электрической проводимостью. В случае очень большого напряжения может произойти разрушение диэлектрика, называемое пробоем. Эти процессы определяют свойства диэлектриков, а, следовательно, надежность их работы в радиоустройствах.

 

По области применения все диэлектрические материалы можно разделить на электроизоляционные и диэлектрики в электрических конденсаторах.

Первые используются для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга части, находящиеся под различными электрическими потенциалами.

 

Вторые используются для создания определенного значения электрической емкости конденсатора, а в некоторых случаях для обеспечения определенного вида зависимости этой емкости от температуры и других факторов.

По возможности управления электрическими свойствами диэлектрические материалы можно разделить на пассивные с постоянными свойствами и активные, свойствами которых можно управлять (сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электреты и др.).

Диэлектрические материалы подразделяются по их агрегатному состоянию на газообразные, жидкие и твердые. В особую группу могут быть выделены твердеющие материалы, которые в исходном состоянии являются жидкостями, но затем отверждаются и в готовой, находящейся в эксплуатации изоляции, представляют собой твердые тела (лаки и компаунды).

В соответствии с химической природой все диэлектрики делятся на органические и неорганические. Под органическим веществами подразумеваются соединения углерода; обычно они содержат также водород, кислород, азот, галогены или иные элементы. Прочие вещества считаются неорганическими; многие из них содержат кремний, алюминий и др. металлы, кислород и т.п.

Количество диэлектрических материалов исчисляется многими тысячами. Поэтому здесь будут даны лишь общие представления об особенностях строения и свойств основных классов диэлектриков.

 

 







Дата добавления: 2015-04-19; просмотров: 4213. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия