Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Устройства





Основное назначение ОС – передача сигнала с выхода устройства на его вход. Кроме того, существует и побочное (как правило нежелательное) влияние ОС на параметры и характеристики устройства. Во-первых, ЦОС шунтирует вход и выход устройства. Во-вторых, через ЦОС сигнал может просачиваться и в прямом направлении: с входа устройства на его выход. Классическая теория ОС пренебрегает побочным влиянием ОС, считая устройство с ОС однонаправленной системой (передача сигнала происходит только по направлениям, указанным стрелками на рис. 1.1), состоящей из взаимно независимых функциональных элементов: устройства и ЦОС. Однако, если допущение об однонаправленности системы имеет место для большинства реальных схем с ОС, то пренебрежением шунтирующим влиянием ЦОС может привести не только к количественным, но и качественным неверным выводам о характере воздействия ОС на параметры устройства.

Проблема учета взаимного влияния устройства и ЦОС решается наиболее просто, если для исследования систем с ОС использовать метод четырехполюсника (разд. 3.2 в [1]), основанный на представлении устройства с ОС в виде регулярного встречного соединения двух трехполюсников: устройства без ОС и ЦОС, так как вход ЦОС подключен к выходу устройства, а выход ЦОС – к его входу. Так, например, параллельную ОС по напряжению (рис.1.2 в) можно рассматривать как встречное регулярное параллельное соединение этих трехполюсников. В табл. 3.1 [1] приведены y – параметры согласного соединения (вход со входом, выход с выходом) трехполюсников. Индексы "I" и "II" означают принадлежность y – параметров к устройству и ЦОС. Для перехода к y – параметрам встречного соединения необходимо сделать замену: , , , . Зная y – параметры соединения и воспользовавшись табл. 4.1 [1], можно найти выражение для параметров устройства с ОС.

Рассмотрим изложенную методику на примере вывода выражения для сквозного коэффициента передачи по напряжению усилителя, охваченного параллельной ОС по напряжению (рис. 1.2, в).

Для встречного регулярного параллельного соединения двух трехполюсников (ЦОС и устройством без ОС)

(1.1)

Допущения об однонаправленности системы математически записывается как и .

Подставляя y – параметры из (3.1)в выражения для сквозного коэффициента передачи по напряжению любого линейного четырехполюсника (табл. 4.1 [1])

(1.2)

и полагая, что условие однонаправленности системы выполняется, получим

, (1.3)

где индекс "F" означает принадлежность данного параметра устройству, охваченного ОС, , - проводимости источника сигнала и нагрузки.

При исследовании конкретных схем с ОС разделение схемы на ЦОС и основное устройство часто вызывает затруднения. Поэтому логичнее устройство с ОС представить в виде соединения каналов прямой и обратной передач (КПП и КОП). КПП отвечает за передачу сигнала в прямом направлении, т.е. с входа устройства на его выход, а КОП – в обратном: с выхода на вход. Если принять допущения классической теории ОС (однонаправленность и взаимная независимость каналов), то коэффициенты передачи КПП и КОП будут совпадать с коэффициентами передачи устройства без ОС и ЦОС.

При определении коэффициента передачи КПП ( * ) будем учитывать шунтирующее влияние КОП (ЦОС). При нахождении же коэффициента передачи КОП влиянием КПП пренебрегаем, т.к. взаимное влияние каналов было уже учтено при определении *. Такое разделение КПП и КОП обладает достаточной наглядностью и дает аргументированный ответ о возможности применения допущения о взаимной независимости этих каналов.

Из (1.3) следует, что ,

.

Умножая и деля второй член в квадратных скобках на проводимость и вводя обозначение

, (1.4)

получим

, (1.5)

где Bкоэффициент передачи ЦОС.

Таблица 1.1. Значения параметров выражения (1.5) для различных видов ОС

Вид ОС
  Параллельная по напряжению
  Последовательная по напряжению
  Параллельная по току
  Последовательная по току

 

Обратите внимание, что коэффициент передачи КПП Ke* – это коэффициент передачи устройства с учетом шунтирующего влияния ЦОС!

Выражение (1.5) справедливо для любого вида ОС, только в зависимости от вида ОС будут изменяться значения параметров, входящих в это выражение (табл. 1.1).

Как видно из рис.1.2, в КПП и ЦОС составляют замкнутое кольцо, которое принято называть петлей обратной связи. Для количественной оценки ОС применяют коэффициент усиления вдоль разомкнутой петли ОС, который называется коэффициентом петлевого усиления и обозначается через . Очевидно, что

(1.6)

Наряду с используется возвратное отношение

(1.7)

и глубина ОС (возвратная разность)

(1.8)

– параметр, показывающий, как изменится коэффициент передачи устройства при введении ОС.

Из (1.5), (1.6) и (1.8) следует, что

. (1.9)

Если шунтирующим влиянием ЦОС можно пренебречь то, вне зависимости от вида ОС, из табл. 1.1 получим, что

, (1.10)

а выражение (1.9) примет классический вид

. (1.11)

Возвратное отношение (1.7) – величина комплексная, характеризуемая модулем T и аргументом , где и – аргументы комплексных коэффициентов передачи и . Отрицательный знак перед в (1.7) говорит о том, что петля ОС спроектирована таким образом, что включает постоянный (частотно-независимый) фазовый сдвиг равный .

Аргумент же зависит от частоты и при фазовый сдвиг вдоль петли ОС будет равен или , а при , т.е. в первом случае ОС – положительная, а во втором – отрицательная (см. разд. 1.1). Так как на разных частотах значения различно, то вид ОС при изменении частоты от 0 до будет меняться не один раз, в зависимости от числа нулей и полюсов передаточной функции T(p).

Таким образом, при , т.е. при ООС

и глубина ОС

, (1.12)

т.е. ООС уменьшает коэффициент усиления в F раз, что является наиболее существенным недостатком такого вида ОС.

При ПОС и , а

. (1.13)

При T = 1 F = 0 и , что физически соответствует самовозбуждению устройства, т.е. оно превращается в генератор незатухающих колебаний. Возбудившееся устройство не может выполнять свои прямые функции, поэтому самовозбуждения устройства в эксплуатационных условиях недопустимо. Более подробно вопросы устойчивости устройств с ОС будут изложены в разд. 1.8.

 







Дата добавления: 2015-06-12; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия