Действия с векторами в координатах
Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов: 1) Правило сложения векторов. Рассмотрим два вектора плоскости Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы 2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор Для пространственного вектора Приведённые факты строго доказываются в курсе аналитической геометрии. Примечание: Данные правила справедливы не только для ортонормированных базисов Пример 7 Даны векторы Решение чисто аналитическое: Ответ: Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо): Пример 8 Даны векторы Решение: Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем: Ответ: И в заключение занятный пример с векторами на плоскости: Пример 9 Даны векторы Это задача для самостоятельного решения.
|