Как найти вектор по двум точкам?
Если даны две точки плоскости и , то вектор имеет следующие координаты: Если даны две точки пространства и , то вектор имеет следующие координаты: То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора. Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока. Пример 1 Даны две точки плоскости и . Найти координаты вектора Решение: по соответствующей формуле: Как вариант, можно было использовать следующую запись: Эстеты решат и так: Ответ: По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии Обязательно нужно понимать различие между координатами точек и координатами векторов: Координаты точек – это обычные координаты в прямоугольной системе координат. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя. Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости . Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства. Пример 2 а) Даны точки и . Найти векторы и .
|