Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Одноканальная СМО с ожиданием и ограниченной очередью





Рассмотрим теперь одноканальную СМО с ожиданием.
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания — случайная величина, подчи­ненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.
Рассмотрим систему с ограниченной очередью. Предположим, что независимо оттого, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), из которых одна обслуживается, а (N -1) ожидают, Клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте и такие заявки теряются. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.
Обозначим - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .
С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):
вероятность отказа в обслуживании заявки:
PоткN=
относительная пропускная способность системы:

абсолютная пропускная способность:
А = q ∙λ;
среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:
;
средняя продолжительность пребывания клиента (заявки) в очереди:
Wq = Ws - 1/μ;
среднее число заявок (клиентов) в очереди (длина очереди):
Lq =λ(1- PN) Wq.
Рассмотрим пример одноканальной СМО с ожиданием.
Пример. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3, то есть (N — 1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику имеет интенсивность λ;=0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно =1,05 час.
Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.
Решение
Интенсивность потока обслуживаний автомобилей:

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

Вычислим вероятности нахождения п заявок в системе:

P 1=r∙ P 0=0,893∙0,248=0,221;
P 2=r2P 0=0,8932∙0,248=0,198;
P 3=r3P 0=0,8933∙0,248=0,177;
P 4=r4P 0=0,8934∙0,248=0,158.
Вероятность отказа в обслуживании автомобиля:
Pотк = Р 4=r4P 0≈0,158.
Относительная пропускная способность поста диагностики:
q =1– Pотк =1-0,158=0,842.
Абсолютная пропускная способность поста диагностики
А =λ∙ q =0,85∙0,842=0,716 (автомобиля в час).
Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):


Среднее время пребывания автомобиля в системе:
часа.
Средняя продолжительность пребывания заявки в очереди на обслуживание:
Wq = Ws -1/μ=2,473-1/0,952=1,423 часа.
Среднее число заявок в очереди (длина очереди):
Lq=λ∙(1-PN)∙Wq= 0,85∙(1-0,158)∙1,423=1,02.
Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обнаруживает автомобили в среднем в 15,8% случаев (Ротк =0,158).







Дата добавления: 2015-06-12; просмотров: 1045. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия