Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многоканальная СМО с ожиданием





Рассмотрим многоканальную систему массового обслуживания с ожиданием. Процесс массового обслуживания при этом характеризуется следующим: входной и выходной потоки имеют интенсивности λ и μ соответственно, параллельно обслуживаться могут не более С клиентов, то есть система имеет С каналов обслуживания. Средняя продолжительность обслуживания одного клиента равна .
Вероятности того, что в системе находятся п заявок (С обслуживаются, остальные ожидают в очереди) равна:

где
.
Решение будет действительным, если выполняется следующее условие:
Остальные вероятностные характеристики функционирования в стационарном режиме многоканальной СМО с ожиданием и неограниченной очередью определяется по следующим формулам:
среднее число клиентов в очереди на обслуживание
;
среднее число находящихся в системе клиентов (заявок на обслуживание и в очереди)
LS = Lq +ρ;
средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди
;
средняя продолжительность пребывания клиента в системе
.
Рассмотрим примеры многоканальной системы массового обслуживания с ожиданием.
Пример. Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неисправных механизмов, прибывающих в мастерскую, - пуассоновский и имеет интенсивность λ=2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно t об =0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской может расти практически неограниченно.
Требуется вычислить следующие предельные значения вероятностных характеристик системы:
- вероятность состояний системы;
- среднее число заявок в очереди на обслуживание;
- среднее число находящихся в системе заявок;
- среднюю продолжительность пребывания заявки в очереди;
- среднюю продолжительность пребывания заявки в системе.
Решение
Определим параметр потока обслуживаний

Приведенная интенсивность потока заявок
ρ=λ/μ=2,5/2,0=1,25,
при этом λ/μ ∙ с =2,5/2∙3=0,41<1.
Поскольку λ/μ∙ с <1, то очередь не растет безгранично и в системе наступает предельный стационарный режим работы.
Вычислим вероятности состояний системы:



Вероятность отсутствия очереди у мастерской
РоткР 0+ Р 1+ Р 2+ Р 3≈0,279+0,394+0,218+0,091=0,937.
Среднее число заявок в очереди на обслуживание

Среднее число находящихся в системе заявок
Ls = Lq + =0,111+1,25=1,361.
Средняя продолжительность пребывания механизма в очереди на обслуживание
суток.
Средняя продолжительность пребывания механизма в мастерской (в системе)
суток.

 

Тема 5. Сетевое планирование и управление

Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-компьютерная модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи.
Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет:
во-первых, более четко выявить взаимосвязи этапов реализации проекта;
во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ.







Дата добавления: 2015-06-12; просмотров: 568. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия