Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исходные данные





Вид сырья Запасы сырья Вид продукции
Р 1 Р 2 Р 3 Р 4
S 1     2   3
S 2          
S 3          
Прибыль          

Модель задачи по критерию "максимум прибыли":

Теперь сформулируем двойственную задачу. Пусть некая организация решила закупить все ресурсы рассматриваемого предприятия. При этом необходимо установить оптимальную цену на приобретаемые ресурсы у1, у2, y3 исходя из следующих объективных условий:

1) покупающая организация старается минимизировать общую стоимость ресурсов;

2) за каждый вид ресурсов надо уплатить не менее той суммы, которую хозяйство может выручить при переработке сырья в готовую продукцию.

Согласно первому условию общая стоимость сырья выразится величиной . Согласно второму требованию вводятся ограничения: на единицу первого вида продукции расходуются четыре единицы первого ресурса ценой y 1, одна единица второго ресурса ценой у2 и три единицы третьего ресурса ценой у3. Стоимость всех ресурсов, расходуемых на производство единицы первого вида продукции, равна и должна составлять не менее 14, т.е.

В результате аналогичных рассуждений относительно производства второго, третьего и четвертого видов продукции получаем систему неравенств:

По экономическому смыслу цены неотрицательные:

Получили симметричную пару взаимодвойственных задач. В результате решения данной задачи симплексным методом получен оптимальный план . На рис. 3.1 приведен результат решения задачи с использованием надстройки Поиск решения Excel. Жирным шрифтом выделены оптимальные значения и .

Экономический смысл первой теоремы двойственности следующий. План производства X и набор оценок ресурсов Y оказываются оптимальными тогда и только тогда, когда прибыль от реализации продукции, определенная при известных заранее ценах продукции с1, с 2,..., с3, равна затратам на ресурсы но "внутренним" (определяемым только из решения задачи) ценам ресурсов у1, у2,…,ут. Для всех же других планов и обеих задач прибыль от продукции всегда меньше (или равна) стоимости затраченных ресурсов: , т.е. ценность всей выпущенной продукции не превосходит суммарной оценки имеющихся ресурсов. Значит, величина характеризует производственные потери в зависимости от рассматриваемой производственной программы и выбранных оценок ресурсов.

Ячейки переменных
Ячейка Имя Окончательное значение Приведенная стоимость Целевая функция Коэффициент Допустимое увеличение Допустимое уменьшение
SBS1     -2     1Е+30
SCSI           0.666666667
SDS1   12,5        
SES1     -10     1Е+30
Ограничения
Ячейка Имя Окончательное значение Теневая цена Ограничение Правая сторона Допустимое увеличение Допустимое уменьшение
SFS3            
SFS4           12.5
$Н$5         1Е+30  
               

Рис. 3.1. Отчет по устойчивости Microsoft Excel

Из первой теоремы двойственности следует, что при оптимальных производственной программе и векторе оценок ресурсов производственные потери равны нулю.

Экономический смысл первой теоремы двойственности можно интерпретировать и так: предприятию безразлично, производить ли продукцию по оптимальному плану и получить максимальную прибыль либо продать ресурсы по оптимальным ценам и возместить от продажи равные ей минимальные затраты на ресурсы.

Из второй теоремы двойственности в данном случае следуют такие требования на оптимальную производственную программу и оптимальный вектор оценок :

если (3.10)

если

если (3.11)

если

Условия (3.10) можно интерпретировать так: если оценка уi, единицы ресурса г-го вида положительна, то при оптимальной производственной программе этот ресурс используется полностью; если же ресурс используется не полностью, то его оценка равна нулю.

Из условия (3.11) следует, что если j -й вид продукции вошел в оптимальный план, то он в оптимальных оценках не убыточен; если же j -й вид продукции убыточен, то он не войдет в план, не будет выпускаться.

Кроме нахождения оптимального решения должно быть обеспечено получение дополнительной информации о возможных изменениях решения при изменении параметров системы. Эту часть исследования обычно называют анализом модели на чувствительность. Он необходим, например, в тех случаях, когда некоторые характеристики исследуемой системы не поддаются точной оценке.

Экономико-математический анализ решений осуществляется в двух основных направлениях: в виде вариантных расчетов по моделям с сопоставлением различных вариантов плана и в виде анализа каждого из полученных решений с помощью двойственных оценок. Вариантные расчеты могут осуществляться при неизменной структуре самой модели (постоянном составе неизвестных, способов производства, ограничений задачи и одинаковом критерии оптимизации), но с изменением численной величины конкретных показателей модели. Вариантные расчеты могут проводиться также при варьировании элементов самой модели: изменении критерия оптимизации, добавлении новых ограничений на ресурсы или на способы производства их использования, расширения множества вариантов и т.д.

Одно из эффективных средств экономико-математического анализа - использование объективно обусловленных оценок оптимального плана. Такого рода анализ базируется на свойствах двойственных оценок. Выше мы установили общие математические свойства двойственных оценок для задач на оптимум любой экономической природы. Однако экономическая интерпретация этих оценок может быть совершенно различной для разных задач.

Перейдем к рассмотрению конкретных экономических свойств оценок y i, оптимального плана. Сначала перечислим эти свойства, а затем проиллюстрируем их конкретными примерами.

Свойство 1. Оценки как мера дефицитности ресурсов и продукции.

Свойство 2. Оценки как мера влияния ограничений на функционал.

Свойство 3. Оценки как инструмент определения эффективности отдельных вариантов.

Свойство 4. Оценки как инструмент балансирования суммарных затрат и результатов.

Пример 3.2 (задача о планировании выпуска тканей). Пусть некоторая фабрика выпускает три вида тканей, причем суточное плановое задание составляет не менее 90 м тканей первого вида, 70 м - второго и 60 м - третьего. Суточные ресурсы следующие: 780 единиц производственного оборудования, 850 единиц сырья и 790 единиц электроэнергии, расход которых на один метр ткани представлен в табл. 3.2.

Таблица 3.2







Дата добавления: 2015-06-12; просмотров: 846. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия