Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нейрофизиологические механизмы восприятия боли. 9 страница





Установлено, что любое воздействие, приводящее к повреждению тканей и являющееся адекватным для ноцицептора, сопровождается высвобождением алгогенных (вызывающих боль) химических агентов. Выделяют три типа таких веществ.

а) тканевые (серотонин, гистамин, ацетилхолин, простагландины, ионы К и Н);

б) плазменные (брадикинин, каллидин);

в) выделяющиеся из нервных окончаний (субстанция P).

Предложено немало гипотез о ноцицептивных механизмах алгогенных субстанций. Считается, что субстанции, содержащиеся в тканях, непосредственно активируют концевые разветвления немиелинизированных волокон и вызывают импульсную активность в афферентах. Другие (простагландины), сами не вызывают боли, но усиливают эффект ноцицептивного воздействия иной модальности. Третьи (субстанция P) выделяются непосредственно из терминалей и взаимодействуют с рецепторами, локализованными на их мембране, и, деполяризуя ее, вызывают генерацию импульсного ноцицептивного потока. Предполагается также, что субстанция P, содержащаяся в сенсорных нейронах спинномозговых ганглиев, действует и как синаптический передатчик в нейронах заднего рога спинного мозга.

В качестве химических агентов, активирующих свободные нервные окончания, рассматриваются не идентифицированные до конца вещества или продукты разрушения тканей, образующиеся при сильных повреждающий воздействиях, при воспалении, при локальной гипоксии. Свободные нервные окончания активируются и интенсивным механическим воздействием, вызывающим их деформацию, обусловленную сжатием ткани, растяжением полого органа с одновременным сокращением его гладкой мускулатуры.

По мнению Гольдшайдера, боль возникает не в результате раздражения специальных ноцицепторов, а вследствие избыточной активации всех типов рецепторов различных сенсорных модальностей, которые в норме реагируют только на не болевые, "не ноцицептивные" стимулы. В формировании боли в этом случае

главенствующее значение имеет интенсивность воздействия, а также пространственно-временное соотношение афферентной информации, конвергенция и суммация афферентных потоков в ЦНС. В последние годы получены весьма убедительные данные о наличии "неспецифических" ноцицепторов в сердце, кишечнике, легких.

В настоящее время считается общепризнанным, что основными проводниками кожной и висцеральной болевой чувствительности являются тонкие миэлиновые А- дельта и без миэлиновые С волокна, различающиеся по ряду физиологических свойств.

Сейчас общепринято следующее разделение боли на:

1) первичную- светлую, коротко латентную, хорошо локализованную и качественно детерминированную боль;

2) вторичную- темную, длинно латентную, плохо локализованную, тягостную, тупую боль.

Показано, что "первичная" боль связана с афферентной импульсацией в А- дельта волокнах, а "вторичная" - с C-волокнами.

Восходящие пути болевой чувствительности. Существуют два основные "классические" - лемнисковые и экстралемнисковые восходящие системы. В пределах спинного мозга одна из них располагается в дорсальной и дорсолатеральной зоне белого вещества, другая- в его вентролатеральной части. В ЦНС не существует специализированных путей болевой чувствительности, и интеграция боли осуществляется на различных уровнях ЦНС на основе сложного взаимодействия лемнисковых и экстралемнисковых проекций. Однако, доказано, что значительно большую роль в передаче восходящей ноцицептивной информации играют вентролатеральные проекции.

Структуры и механизмы интеграции боли. Одной из главных зон восприятия афферентного притока и его переработки является ретикулярная формация головного мозга. Именно здесь оканчиваются пути и коллатерали восходящих систем и начинаются восходящие проекции к вентро-базальным и интраламинарным ядрам таламуса и далее - в соматосенсорную кору. В ретикулярной формации продолговатого мозга существуют нейроны, активирующиеся исключительно ноцицептивными стимулами. Наибольшее их количество (40-60%) выявлено в медиальных ретикулярных ядрах. На основе информации, поступающей в ретикулярную формацию, формируются соматические и висцеральные рефлексы, которые интегрируются в сложные соматовисцеральные проявления ноцицепции. Через связи ретикулярной формации с гипоталамусом, базальными ядрами и лимбическим мозгом реализуются нейроэндокринные и эмоционально- аффективные компоненты боли, сопровождающие реакции защиты.

Таламус. Выделяют 3 основных ядерных комплекса, имеющих непосредственное отношение к интеграции боли: вентро-базальный комплекс, задняя группа ядер, медиальные и интраламинарные ядра.

Вентро-базальный комплекс является главным релейным ядром всей соматосенсорной афферентной системы. В основном здесь оканчиваются восходящие лемнисковые проекции. Считается, что мультисенсорная конвергенция на нейронах вентро-базального комплекса обеспечивает точную соматическую информацию о локализации боли, ее пространственную соотнесенность. Разрушение

вентро-базального комплекса проявляется проходящим устранением "быстрой", хорошо локализованной боли и изменяет способность к распознаванию ноцицептивных стимулов.

Считается, что задняя группа ядер наряду с вентро-базальным комплексом участвует в передаче и оценке информации о локализации болевого воздействия и частично в формировании мотивационно-аффективных компонентов боли.

Клетки медиальных и интраламинарных ядер отвечают на соматические, висцеральные, слуховые, зрительные и болевые стимулы. Разно модальные ноцицептивные раздражения - пульпы зуба, А-дельта, С-кожных волокон, висцеральных афферентов, а также механические, термические и др. вызывают отчетливые, увеличивающиеся пропорционально интенсивности стимулов, ответы нейронов. Предполагается, что клетки интраламинарных ядер осуществляют оценку и раскодирование интенсивности ноцицептивных стимулов, различая их по продолжительности и паттерну разрядов.

Кора головного мозга. Традиционно считалось, что основное значение в переработке болевой информации имеет вторая соматосенсорная зона. Эти представления связаны с тем, что передняя часть зоны получает проекции из вентро-базального таламуса, а задняя- из медиальных, интраламинарных и задних групп ядер. Однако в последние годы представления об участии различных зон коры в перцепции и оценке боли существенно дополняются и пересматриваются.

Схема корковой интеграции боли в обобщенном виде может быть сведена к следующему. Процесс первичного восприятия осуществляется в большей мере соматосенсорной и фронто-орбитальной областями коры, в то время как другие области, получающие обширные проекции различных восходящих систем, участвуют в качественной ее оценке, в формировании мотивационно-аффективных и психодинамических процессов, обеспечивающих переживание боли и реализацию ответных реакций на боль.

Следует подчеркнуть, что боль в отличие от ноцицепции это не только и даже не столько сенсорная модальность, но и ощущение, эмоция и "своеобразное психическое состояние" (П.К. Анохин). Поэтому боль как психофизиологический феномен формируется на основе интеграции ноцицептивных и антиноцицептивных систем и механизмов ЦНС.

 

Антиноцицептивная система.

Ноцицептивная система имеет свой функциональный антипод - антиноцицептив-ную систему, которая контролирует деятельность структур ноцицептивной системы.

Антиноцицептивная система состоит из разнообразных нервных образований, относящихся к разным отделам и уровням организации ЦНС, начиная с афферентного входа в спинном мозге и кончая корой головного мозга.

Антиноцицептивная система играет существенную роль в механизмах предупреждения и ликвидации патологической боли. Включаясь в реакцию при чрезмерных ноцицептивных раздражениях, она ослабляет поток ноцицептивной стимуляции и интенсивность болевого ощущения, благодаря чему боль остается под контролем и не приобретает патологического значения. При нарушении же деятельности антиноцицептивной системы ноцицептивные раздражения даже небольшой интенсивности вызывают чрезмерную боль.

Антиноцицептивная система имеет свое морфологическое строение, физиологические и биохимические механизмы. Для нормального его функционирования необходим постоянный приток афферентной информации, при ее дефиците функция антиноцицептивной системы ослабляется.

Антиноцицептивная система представлена сегментарным и центральным уровнями контроля, а также гуморальными механизмами - опиоидной, моноаминергической (норадреналин, дофамин, серотонин), холин-ГАМК-эргическими системами.

Кратко остановимся на вышеуказанных механизмах.

Опиатные механизмы обезболивания. Впервые в 1973 г. было установлено избирательное накопление веществ, выделенных из опия, например морфина или его аналогов, в определенных структурах мозга. Эти образования получили название опиатных рецепторов. Наибольшее их количество находится в отделах мозга, передающих ноцицептивную информацию. Показано, что опиатные рецепторы связываются с веществами типа морфина или его синтетическими аналогами, а также с аналогичными веществами, образующимися в самом организме. В последние годы доказана неоднородность опиатных рецепторов. Выделены Мю-, дельта-, каппа-, сигма-опиатные рецепторы. Так, например, морфиноподобные опиаты соединяются с Мю-рецепторами, опиатные пептиды- с дельта рецепторами.

Эндогенные опиаты. Выяснено, что в крови и спинномозговой жидкости человека имеются вещества, обладающие способностью соединяться с опиатными рецепторами. Они выделены из мозга животных, имеют структуру олигопептидов и получили название энкефалинов (мет- и лей-энкефалин). Из гипоталамуса и гипофиза были получены вещества с еще большей молекулярной массой, имеющие в своем составе молекулы энкефалина и названные большими эндорфинами. Эти соединения об- разуются при расщеплении бета-липотропина, а учитывая, что он является гормоном гипофиза, можно объяснить гормональное происхождение эндогенных опиоидов. Из других тканей получены вещества с опиатными свойствами и иной химической структуры- это лей-бета-эндорфин, киторфин, динорфин и др.

Различные области ЦНС имеют неодинаковую чувствительность эндорфинам и энкефалинам. Например, гипофиз в 40 раз чувствительнее к эндорфинам, чем к энкефалинам. Опиатные рецепторы обратимо соединяются с наркотическими аналгетиками, и последние могут быть вытеснены их антагонистами с восстановлением болевой чувствительности.

Каков же механизм обезболивающего действия опиатов? Считается, что они соединяются с рецепторами (ноцицепторами) и, так как имеют большие размеры, препятствуют соединению с ними нейротрансмиттера (субстанции P). Известно также, что эндогенные опиаты обладают и пресинаптическим действием. В результате этого уменьшается выделение дофамина, ацетилхолина, субстанции P, а также простагландинов. Предполагают, что опиаты вызывают угнетение в клетке функции аденилатциклазы, уменьшение образования цАМФ и, как следствие, торможение выделения медиаторов в синаптическую щель.

Адренэргические механизмы обезболивания. Установлено, что норадреналин тормозит проведение ноцицептивных импульсов как на сегментарном (спинной мозг), так и стволовом уровнях. Этот его эффект реализуется при взаимодействии с альфа-адренорецепторами. При болевом воздействии (равно как и стрессе) резко активируется симпатоадреналовая система (САС), мобилизуются тропные гормоны, бета-липотропин и бета-эндорфин как мощные аналгетические полипептиды гипофиза, энкефалины. Попадая в спинномозговую жидкость, они влияют на нейроны таламуса, центрального серого вещества мозга, задние рога спинного мозга, тормозя образование медиатора боли- субстанции Р и обеспечивая таким образом глубокую анальгезию. Одновременно с этим усиливается образование серотонина в большом ядре шва, который также тормозит реализацию эффектов субстанции Р. Считается, что эти же механизмы обезболивания включаются при акупунктурной

стимуляции не болевых нервных волокон.

Для иллюстрации многообразия компонентов антиноцицептивной системы следует сказать, что выявлено много гормональных продуктов, оказывающих аналгетический эффект без активации опиатной системы. Это вазопрессин, ангиотензин, окситоцин, соматостатин, нейротензин. Причем, аналгетический эффект их может быть в несколько раз сильнее энкефалинов.

Есть и другие механизмы обезболивания. Доказано, что активация холинэргической системы усиливает, а блокада ее ослабляет морфийную систему. Предполагают, что связывание ацетилхолина с определенными центральными М- рецепторами стимулирует высвобождение опиоидных пептидов. Гамма-аминомасляная кислота регулирует болевую чувствительность, подавляя эмоционально-поведенческие реакции на боль. Боль, активируя ГАМК и ГАМК- эргическую передачу, обеспечивает адаптацию организма к болевому стрессу.

Острая боль. В современной литературе можно встретить несколько теорий, объясняющих происхождение боли. Наибольшее распространение получила т.н. "воротная" теория Р. Мельзака и П. Уолла. Она заключается в том, что желатинозная субстанция заднего рога, которая обеспечивает контроль поступающих в спинной мозг афферентных импульсов, выступает в роли ворот, пропускающих ноцицептивные импульсы вверх. Причем, важное значение принадлежит Т-клеткам желатинозной субстанции, где происходит пресинаптическое торможение терминалей, в этих условиях болевые импульсы не проходят дальше в центральные

мозговые структуры и боль не возникает. По современным представлениям, закрытие "ворот" связано с образование энкефалинов, которые тормозят реализацию эффектов важнейшего медиатора боли - субстанции Р. Если увеличивается приток афферентации по А-дельта и С-волокнам, активируются Т- клетки и ингибируются клетки желатинозной субстанции, что снимает ингибиторный эффект нейронов желатинозной субстанции на терминали афферентов с Т-клетками. Поэтому активность Т-клеток превышает порог возбуждения и возникает боль вследствие облегчения передачи болевых импульсов в мозг. "Входные ворота" для болевой информации в этом случае открываются.

Важным положением этой теории является учет центральных влияний на "воротный контроль" в спинном мозге, ибо такие процессы, как жизненный опыт, внимание оказывают влияние на формирование боли. ЦНС осуществляет контроль сенсорного входа за счет ретикулярных и пирамидных влияний на воротную систему. Например, Р. Мельзак приводит такой пример: женщина неожиданно обнаруживает у себя уплотнение в груди и, беспокоясь, что это рак, может вдруг почувствовать боль в груди. Боль может усиливаться и даже распространяться на плечо и руку. Если врачу удастся убедить ее, что это уплотнение не представляет опасности, может наступить моментальное прекращение боли.

Формирование боли обязательно сопровождается активацией антиноцицептивной системы. Что же влияет на уменьшение или исчезновение боли? Это прежде всего информация, которая поступает по толстым волокнам и на уровне задних рогов спинного мозга, усиливает образование энкефалинов (о их роли мы говорили выше). На уровне ствола мозга включается нисходящая аналгетическая система (ядра шва), которая посредством серотонин-, норадреналин-, энкефалинэргических механизмов оказывает нисходящие влияния на задние рога и таким образом на болевую информацию. За счет возбуждения САС также тормозится передача болевой информации, и это является важнейшим фактором усиления образования эндогенных опиатов. Наконец, за счет возбуждения гипоталамуса и гипофиза активируется образование энкефалинов и эндорфинов, а также усиливается прямое влияние нейронов гипоталамуса на задние рога спинного мозга.

Хроническая боль. При длительном повреждении тканей (воспаление, переломы, опухоли и т.д.) формирование боли происходит так же, как и при острой, только постоянная болевая информация, вызывая резкую активацию гипоталамуса и гипофиза, САС, лимбических образований мозга, сопровождается более сложными и продолжительными изменениями со стороны психики, поведения, эмоциональных проявлений, отношения к окружающему миру (уход в боль).

По теории Г.Н. Крыжановского хроническая боль возникает в результате подавления тормозных механизмов, особенно на уровне задних рогов спинного мозга и таламуса. При этом в мозге формируется генератор возбуждения. Под влиянием экзогенных и эндогенных факторов в определенных структурах ЦНС вследствие недостаточности тормозных механизмов возникают генераторы патологически усиленного возбуждения (ГПУВ), активирующие положительные связи, вызывая эпилептизацию нейронов одной группы и повышение возбудимости других нейронов.

Фантомные боли (боли в ампутированных конечностях) объясняются в основном дефицитом афферентной информации и в результате этого тормозное влияние Т-клеток на уровне рогов спинного мозга снимается, а любая афферентация из области заднего рога воспринимается как болевая.

Отраженная боль. Ее возникновение связано с тем, что афференты внутренних органов и кожи связаны с одними и теми же нейронами заднего рога спинного мозга, которые дают начало спинно-таламическому тракту. Поэтому афферентация, идущая от внутренних органов (при их поражении), повышает возбудимость и соответствующего дерматома, что воспринимается как боль в этом участке кожи.

Основные различия проявлений острой и хронической боли.

1.При хронической боли автономные рефлекторные реакции постепенно уменьшаются и в конечном счете исчезают, а превалируют вегетативные расстройства.

2.При хронической боли, как правило, не бывает самопроизвольного купирования боли, для ее нивелирования требуется вмешательство врача.

3.Если острая боль выполняет защитную функцию, то хроническая вызывает более сложные и длительные расстройства в организме и приводит (J.Bonica,1985) к прогрессивному "изнашиванию", вызванному нарушением сна и аппетита, снижением физической активности, часто избыточным лечением.

4.Кроме страха, характерного для острой и хронической боли, для последней свойственны также депрессия, ипохондрия, безнадежность, отчаяние, устранение больных от социально-полезной деятельности (вплоть до суицидальных идей).

Нарушения функций организма при боли. Расстройства функций Н.С. при интенсивной боли проявляются нарушением сна, сосредоточенности, полового влечения, повышенной раздражительностью. При хронической интенсивной боли резко уменьшается двигательная активность человека. Больной находится в состоянии депрессии, повышается болевая чувствительность в результате снижения болевого порога.

Небольшая боль учащает, а очень сильная замедляет дыхание вплоть до его остановки. Может увеличиться частота пульса, системное АД, развиться спазм периферических сосудов. Кожные покровы бледнеют, а если боль непродолжительна, спазм сосудов сменяется их расширением, что проявляется покраснением кожи. Изменяется секреторная и двигательная функция ЖКТ. За счет возбуждения САС сначала выделяется густая слюна (в целом слюноотделение увеличивается), а затем за счет активации парасимпатического отдела нервной системы- жидкая. В последующем уменьшается секреция слюны, желудочного и панкреатического сока, замедляется моторика желудка и кишечника, возможна рефлекторная олиго- и анурия. При очень резкой боли появляется угроза развития шока.

Биохимические изменения проявляются в виде повышения потребления кислорода, распада гликогена, гипергликемии, гиперлипидемии.

Хронические боли сопровождаются сильными вегетативными реакциями. Например, кардиалгии и головные боли сочетаются с подъемом АД, температуры тела, тахикардией, диспепсией, полиурией, повышенным потоотделением, тремором, жаждой, головокружением.

Постоянным компонентом реакции на болевое воздействие является гиперкоагуляция крови. Доказано повышение свертываемости крови у больных на высоте приступа болей, во время оперативных вмешательств, в раннем послеоперационном периоде. В механизме гиперкоагуляции при боли основное значение имеют ускорение тромбиногенеза. Вы знаете, что внешний механизм активации свертывания крови инициируется тканевым тромбопластином, а при боли (стрессе) наблюдается выброс тромбопластина из интактной сосудистой стенки. Кроме того, при болевом синдроме уменьшается содержание в крови физиологических ингибиторов свертывания крови: антитромбина, гепарина. Еще одним характерным изменением при боли в системе гемостаза является перераспределительный тромбоцитоз (поступление в кровь зрелых тромбоцитов из депо- легких).

 

 

АНАЛЬГЕТИКИ







Дата добавления: 2015-06-12; просмотров: 616. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия