Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МАГНИТОЭНЦЕФАЛОГРАФИЯ





Значительные успехи в локализации источников активности мозга, достигнутые в последнее десятилетие, связаны с развитием магнитоэнцефалографии. Первые электромагнитные поля (ЭМП) нервной системы были зарегистрированы у лягушки. Они были записаны с расстояния 12 мм при возбуждении седалищного нерва. Биологические поля мозга и различных органов очень малы. Магнитное поле человеческого сердца составляет около 1 миллионной доли земного магнитного поля, а человеческого тела — в 100 раз слабее. Магнитное поле сердца человека впервые было записано в 1963 г. Первые же измерения ЭМП мозга человека были сделаны Д. Коеном (Коеп О.) из Массачусетс кого технологического института в 1968 г. Магнитным методом он зарегистрировал спонтанный альфа-ритм у здоровых испытуемых и изменение активности мозга у эпилептиков. Первые вызванные потенциалы с помощью магнитометров были получены несколько лет спустя.

Сначала для регистрации ЭМП были использованы индукционные катушки с большим количеством витков- С увеличением их числа чувствительность системы возрастает. Число витков в первых таких катушках достигало миллиона. Однако чувствительность их оставалась невысокой и они не регистрировали постоянное ЭМП.

Создание новых магнитометров связано с открытием Б. Джозефсона, за которое он получил Нобелевскую премию. Работая в области криогенной технологии со сверхпроводящими материалами, он обнаружил, что между двумя сверхпроводниками, разделенными диэлектриком, возникает ток, если они находятся вблизи ЭМП. Эта система реагировала на переменные и постоянные ЭМП. На основе открытия Б. Джозефсона были созданы СКВИДы — сверхпроводниковые квантомеханические интерференционные датчики. Магнитометры, работающие на базе СКВИДа, очень дороги, их необходимо регулярно заполнять жидким гелием в качестве диэлектрика. Дальнейшее совершенствование магнитометров связано с разработкой квантовых магнитометров с оптической накачкой (МОН). Созданы МОНы, в которых вместо жидкого гелия используются пары щелочного металла цезия. Это более дешевые системы, не требующие криогенной техники. В них световой сигнал поступает по световодам от общего источника и достигает фотодетекторов. Колебания ЭМП мозга человека модулируют сигнал на фотодетекторах- По его колебаниям судят об электромагнитных волнах мозга. Каждый магнитометр имеет множество датчиков, что позволяет получать пространственную картину распределения ЭМП. Современные магнитометры (СКВИДы и др.) обладают высокой временной и пространственной разрешающей способностью (до 1 мм и 1 мс).

Магнитоэнцефалограмма (МЭГ) по сравнению с ЭЭГ обладает рядом преимуществ. Прежде всего это связано с бесконтактным методом регистрации. МЭГ не испытывает также искажений от кожи, подкожной жировой клетчатки, костей черепа, твердой мозговой оболочки, крови и др., так как магнитная проницаемость для воздуха и для тканей примерно одинакова. В МЭГ отражаются только источники активности, которые расположены тангенциально (параллельно черепу), так как МЭГ не реагирует на радиально ориентированные источники, т.е. расположенные перпендикулярно поверхности. Благодаря этим свойствам МЭГ позволяет определять локализацию только корковых диполей, тогда как в ЭЭГ суммируются сигналы от всех источников независимо от их ориентации, что затрудняет их разделение. МЭГ не требует индифферентного электрода и снимает проблему выбора места для реально неактивного отведения. Для МЭГ, так же как и для ЭЭГ, существует проблема увеличения соотношения «сигнал-шум, поэтому усреднение ответов также необходимо. Из-за различной чувствительности ЭЭГ и МЭГ к источникам активности особенно полезно комбинированное их использование.

 

ИЗМЕРЕНИЕ ЛОКАЛЬНОГО МОЗГОВОГО КРОВОТОКА

 

Мозговая ткань не имеет собственных энергетических ресурсов и зависит от непосредственного притока кислорода и глюкозы, поставляемых через кровь. Поэтому увеличение локального кровотока может быть использовано в качестве косвенного признака локальной мозговой активации. Метод разработан в 50-х и начале 60-х годов. Он основан на измерении скорости вымывания из ткани мозга изотопов ксенона или криптона (изотопный клиренс) или же атомов водорода (водородный клиренс). Скорость вымывания радиоактивной метки прямо связана с интенсивностью кровотока. Чем интенсивнее кровоток в данном участке мозга, тем быстрее в нем будет накапливаться содержание радиоактивной метки и быстрее происходить ее вымывание. Увеличение кровотока коррелирует с ростом уровня метаболической активности мозга. Регистрация метки производится с помощью многоканальной гамма-камеры. Используют шлем со специальными сцинтилляционными датчиками (до 254 штук). Применяют два метода введения изотопов. При инвазивном методе изотоп вводят в кровяное русло через сонную артерию. Регистрацию начинают через 10 с после инъекции и продолжают в течение 40—50 с. Недостаток этого метода состоит в том, что можно исследовать только одно полушарие, которое связано с той сонной артерией, в которую сделана инъекция. Кроме того, не все области коры снабжаются кровью через сонные артерии.

Более широкое распространение получил неинвазивный способ измерения локального кровотока, когда изотоп вводят через дыхательные пути. Человек в течение 1 мин вдыхает очень малое количество инертного газа ксенона-133, а затем дышит нормальным воздухом. Через дыхательную систему изотоп попадает в кровяное русло и достигает мозга. Метка уходит из мозговой ткани через венозную кровь, возвращается к легким и выдыхается. Скорость вымывания изотопа в различных точках поверхности полушарий преобразуется в значения локального кровотока и представляется в виде карты метаболической активности мозга. В отличие от инвазивного метода в этом случае метка распространяется на оба полушария.

При измерении водородного клиренса в мозг вживляют ряд металлических электродов для регистрации сдвига электрохимического потенциала, который создается подкисленном тканей ионами водорода. По его уровню судят об активности локального участка мозга. Этот метод на человеке применяют в медицинских целях:

для уточнения клинического диагноза при опухолях, инсультах, травмах.

Пространственное разрешение методов, применяемых для измерения локального мозгового кровотока, достаточно хорошее: для изотопных датчиков — 2 см, для измерения водородного клиренса — 250 мкм. Существенным недостатком этих методов является их низкое временное разрешение. Каждое измерение длится около 2 мин. Поэтому техника измерения локального мозгового кровотока хороша для оценки тонических изменений или характеристики фоновой мозговой активности и малопригодна для изучения ее динамики.

 

ТОМОГРАФИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ МОЗГА

 

Суть томографических методов исследования — получение срезов мозга искусственным путем. Для построения срезов используют либо просвечивание, например, рентгеновскими лучами, либо излучение от мозга, исходящее от изотопов, введенных предварительно в мозг. Последний принцип используется в позитронно-эмиссионной томографии (ПЭТ).

Общий принцип томографии был сформулирован в 1927 г. австрийским физиком Дж. Родоном, занимавшимся проблемой гравитации. Он доказал, что, имея множество изображений срезов объекта, можно восстановить всю его структуру и при желании получить изображение тех его срезов, которые исходно не были получены. Операции, которые выполняются при томографии, получили название прямого и обратного преобразования Родона: описание объекта множеством изображений — прямое преобразование Родона, восстановление всей внутренней структуры объекта по набору его проекций — обратное преобразование.

Различают структурную и функциональную томографию. Рентгеновская томография относится к структурной. ПЭТ, которую еще называют прижизненным методом функционального изотопного картирования мозга, относится к функциональной.

Позитронно-эмиссионная томография основана на выявлении распределения в мозге различных химических веществ, которые принимают участие в метаболической активности мозга. Для этого используют короткоживущие радиоизотопы элементов, входящих в молекулы биоорганических соединений. Так, замещение в молекуле какого-либо вещества атома углерода, кислорода, азота или фтора соответственно изотопом 11С, 15О2, 13N, 18F не влияет на химические свойства вещества, но позволяет проследить его движение методом ПЭТ. Во время исследования меченое вещество вводят в вену или ингаляционно, и оно с током крови поступает в мозг, где включается в соответствующий физиологический процесс.

Перечисленные изотопы являются позитронизлучающими. Явление позитронной эмиссии - это исход из ядра позитронов, в котором нарушен баланс между позитроном и электроном. Позитрон после свободного пробега (1—10 мм) взаимодействует со своей античастицей — электроном. При их воссоединении (аннигиляции) выделяются 2 гамма-кванта, которые разлетаются в прямо противоположных направлениях под углом 180°. Это позволяет ввести счетчики совпадения, которые стоят на противоположных сторонах кольца по многим линиям (рис. 5). ПЭТ-камера содержит детекторы гамма-излучения, собранные в кольца (обычно 8—16). Голова человека находится внутри колец. При сборе данных и последующем расчете определяют плотность актов аннигиляции позитрона с электроном по каждой линии за время сканирования. Множество линий, образованных счетчиками совпадения, дают возможность получить распределение плотности аннигиляции в одном срезе мозга. По полученным горизонтальным срезам строят трехмерное отображение плотности аннигиляции; так создается трехмерный образ объекта для дальнейшего визуального или статистического анализа. Позитронно-эмиссионная установка для функциональной томографии мозга в течение многих лет эксплуатируется для клинической диагностики и в исследовательских целях в Институте мозга человека РАН Санкт-Петербурга (Медведев С.В. и др., 1996).

 

 

МЕТОД МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ

 

В последние несколько лет на базе методов магнитно-резонансной томографии (МРТ), которые сначала применялись для структурной томографии — получения карты структур мозга на основе контраста белого и серого вещества, появилась функциональная МРТ. Техника функциональной МРТ (ФМРТ) основана на использовании парамагнитных свойств тех агентов, которые можно ввести в организм. Такие агенты не обладают магнитными свойствами, но приобретают их, лишь попав в магнитное поле. Функциональная МРТ использует парамагнитные субстанции гемоглобина. ФМРТ измеряет пространственное распределение гемоглобина, отдавшего свой кислород (деоксигемоглобина), точнее — соотношение деоксигемоглобина к гемоглобину. Когда гемоглобин теряет кислород, он становится парамагнитным. При активации организма возрастает метаболическая активность мозга. Это связано с увеличением объема и скорости мозгового кровотока. Дополнительный приток кислорода к участку мозга приводит к снижению в нем концентрации парамагнитного деоксигемоглобина. Существование многих локусов активации отражается в неравномерном распределении в мозге деоксигемоглобина, что создает неоднородность магнитного поля, которую используют для получения карт локальных активации. Функциональная МРТ позволяет выявлять участки мозга с активно работающими нейронными клетками. Данный метод вытесняет ПЭТ, так как ему не нужен изотоп и его временное разрешение выше, чем у ПЭТ (сотни миллисекунд). Недавно в МГУ им. М.В. Ломоносова создан Центр магнитно-резонансной томографии, базу которого предполагается использовать для интеграции различных наук в изучении мозга.

 

ТЕРМОЭНЦЕФАЛОСКОПИЯ

 

Данным методом измеряют локальный метаболизм мозга и кровоток по теплопродукции. Мозг излучает теплолучи в инфракрасном диапазоне. Водяные пары воздуха задерживают значительную часть этого излучения. Но есть два диапазона частотот (3—5 и 8— 14 мкм), в которых тепловые лучи распространяются в атмосфере на огромные расстояния и поэтому могут быть зарегистрированы. Этот метод разработан в Институте высшей нервной деятельности и нейрофизиологии РАН и Институте радиоэлектроники (Шевелёв И.А. и др., 1989). Инфракрасное излучение мозга улавливается на расстоянии от нескольких сантиметров до метра термовизором с автоматической системой сканирования. Сигналы попадают на точечные датчики. Каждая термокарта содержит 10—16 тысяч дискретных точек, образующих матрицу 128х85 или 128х128 точек. Процедура измерений в одной точке длится 2,4 мкс. В работающем мозге температура отдельных участков непрерывно меняется. Построение термокарты дает временной срез метаболической активности мозга.

При получении термокарт мозга обезьяны видеокамеру помещают над поверхностью коры, на которую предварительно наносят краситель, генерирующий инфракрасное излучение в зависимости от активности мозга. Метод фоторезисторов и красителей применяют и при изучении нервной системы моллюска. При этом вместе с оптическим сигналом регистрируется электрическая активность нейронов.

Существует единая методология применения томографии для изучения высших психических функций мозга. Она предполагает процедуру вычитания карты активности мозга, полученной во время выполнения менее сложной когнитивной операции, из карты активности, соответствующей более сложной психической функции. Данная процедура применима и для обработки данных, извлекаемых методом картирования мозга по параметрам ЭЭГ. Это особенно ценно при объединении двух методов анализа: ПЭТ и ЭЭГ, МРТ и ЭЭГ - новая тенденция, которая наметилась в использовании данных методов.

 

 

ПСИХОФИЗИОЛОГИЧЕСКОЕ ИЗУЧЕНИЕ ПСИХИЧЕСКИХ ПРОЦЕССОВ И СОСТОЯНИЙ

 

ПРИНЦИПЫ КОДИРОВАНИЯ ИНФОРМАЦИИ В НЕРВНОЙ СИСТЕМЕ

 

Интенсивное изучение активности нейронов мозга у неанестезированных животных, начавшееся в 50-х годах, неизбежно поставило вопрос о способах кодирования нейронами информации о внешнем мире. Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие — более сложны и характеризуют передачу информации на более высоких уровнях нервной системы, включая кору, В процессе эволюции принципы кодирования более высокого уровня начинают преобладать над более примитивными.

Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др. В работах Т. Буллока (1965) и В. Маунткастла (1967) принцип специфичности получил дальнейшее развитие. Они предложили говорить о меченой линии как о моносинаптической передаче сигналов от рецептора к некоторому центральному нейрону, возбуждение которого соответствует выделению определенного качества стимула (Сомьен Дж., 1975).

Для каждой модальности эволюция нашла свое более адекватное решение проблемы передачи информации. Так, модель меченой линии более подходит к чувствительным окончаниям кожи, которые высокоспецифичны относительно небольшого количества типов раздражений (рецепторы давления, прикосновения, температуры, боли). Это соответственно требует малого числа меченых линий.

Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Для многих периферических нервных волокон была установлена логарифмическая зависимость между интенсивностью раздражителя и частотой вызываемых им ПД. Она выявлена для частоты импульсов в одиночном волокне зрительного нерва, идущего от одного омматидия мечехвоста, и интенсивности света; для частоты спайков веретена — рецептора мышцы лягушки и величины нагрузки на мышцу. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя.

Однако позже закон Фехнера был подвергнут серьезной критике. С. Стивенc на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости.

Закон степенной функции получил сильную эмпирическую поддержку при изучении электрической активности многих сенсорных элементов. Так, частота ПД ганглиозных клеток сетчатки лягушки, реагирующих на скорость движения, находится в степенной зависимости от угловой скорости стимула. Степенной функции подчиняются отношения между частотой импульсации, идущей от медленно адаптирующихся кожных рецепторов, и силой надавливания. В то же время в других опытах получены данные, не соответствующие ни логарифмической, ни степенной зависимости. В слуховых и вкусовых сенсорных волокнах зависимость частоты импульсов от интенсивности описывается S-образной функцией.

Пытаясь примирить S-образные зависимости, небольшое число твердо установленных логарифмических функций с массой фактов, подтверждающих закон степенной зависимости Стивенса, исследователи высказывают предположение, что степенные зависимости между стимулом и реакцией возникают на более высоких уровнях сенсорных систем, сменяя другие типы отношений, представленные на периферии (Тамар Г., 1976).

Другое объяснение связано с уточнением роли числа нервных волокон в передаче информации с помощью частотного кода.

Анализ передачи сигнала о вибрации от соматических рецепторов показал, что информация о частоте вибрации передается с помощью частоты ПД, а ее интенсивность кодируется числом одновременно активных рецепторов. По мнению Р. Гранита (1957), число активированных волокон является важным фактором в механизме интерпретации частотного кода. Он полагает, что интенсивность не может быть передана с помощью только одной частоты импульсов. Необходимо учитывать не отдельную единицу, а скорее активность статистических комплексов. Поэтому, несмотря на значительное взаимодействие в сетчатке и последующую трансформацию сигналов на более высоких уровнях нервной системы, информация об интенсивности может кодироваться частотным кодом, но только на статистической основе, через группу одновременно возбужденных волокон.

В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона (структурную организацию ПД во времени). Устойчивость временного паттерна ответа — отличительная черта нейронов специфической системы мозга. Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной.

На роль ансамбля нейронов в кодировании информации указал Д. Хебб. Он считает, что ни один нейрон не может пересылать никакой информации другим нейронам и что она передается исключительно через возбуждение группы нейронов, входящих в состав соответствующих ансамблей. Д. Хебб предложил рассматривать ансамбль нейронов в качестве основного способа кодирования и передачи информации. Различные наборы возбужденных нейронов одного и того же ансамбля соответствуют разным параметрам стимула, а если ансамбль находится на выходе системы, управляющей движением, — то и разным реакциям. Данный способ кодирования имеет ряд преимуществ. Он более надежен, так как не зависит от состояния одного нейрона. К тому же не требует дополнительно ни операций, ни времени. Однако для кодирования каждого типа стимулов необходим свой уникальный набор нейронов.

Особый принцип обработки информации вытекает из детекторной теории. Он получил название принципа кодирования информации номером детектора (детекторного канала). Передача информации по номеру канала (термин предложен Е.Н. Соколовым) означает, что сигнал следует по цепочке нейронов, конечное звено которой представлено нейроном-детектором простых или сложных признаков, избирательно реагирующим на определенный физический признак или их комплекс.

Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что рецепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раздражение определенного участка рецепторной поверхности. Детекторы локальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности образует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.

Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус возбуждения на карте смешается. Для объяснения организации нейронной сети, работающей как детекторная система, Е.Н. Соколов предложил механизм векторного кодирования сигнала.

Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, который и положил начало новому направлению в психологии — векторной психологии. Г. Йохансон основывался на результатах детального изучения восприятия движения. Он показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассматривается им как результат формирования двухкомпонентного вектора, отражающего действие двух независимых факторов (движения в горизонтальном и вертикальном направлениях). В дальнейшем векторная модель была распространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном пространстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций.

Векторная психофизиология — новое направление, ориентированное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях.

 

 







Дата добавления: 2015-06-12; просмотров: 1136. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия