Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЫЗВАННЫЕ ПОТЕНЦИАЛЫ И ПОТЕНЦИАЛЫ СВЯЗАННЫЕ С СОБЫТИЯМИ





 

Сенсорные стимулы вызывают изменения в суммарной электрической активности мозга, которые выглядят как последовательность из нескольких позитивных и негативных волн, которая длится в течение 0,5-1 с после стимула. Этот ответ получил название вызванного потенциала. Его нелегко выделить из фоновой ЭЭГ. В 1951 г. Дж. Даусон разработал технику когерентного накопления или усреднения ответов. Использовалась процедура синхронизации ЭЭГ относительно момента предъявления стимула, который поэтому многократно повторялся. Сначала использовалась суперпозиция — наложение нескольких реакций (участков ЭЭГ, следующих за стимулом). Обычно это выполнялось на фотопленке, что позволяло выявить наиболее устойчивые части реакции на стимул. Затем процедура суперпозиции была заменена на суммацию участков ЭЭГ и получение усредненного вызванного потенциала (Шагас Ч., 1975; Рут-ман Э.М„ 1975).

Эффективность этой процедуры была наглядно продемонстрирована при выявлении звуковых стволовых вызванных потенциалов (ВП). Из-за их очень малой амплитуды требуется просуммировать и усреднить несколько тысяч единичных ответов. На рис. 2 представлены основные группы компонентов звукового усредненного ВП. По латентному периоду компоненты делятся на три группы: потенциалы ствола мозга (с латенцией до 10—12 мс), средне-латентные (до 50 мс) и длиннолатентные (более 100 мс) потенциалы. Звуковые стволовые потенциалы состоят из 7 отклонений. Волна I зависит от реакции волокон слухового нерва улитки. Волна II с латенцией 3,8 мс возникает в том случае, если импульсы слухового нерва достигают ствола мозга. Волна III отражает реакцию верхней оливы на уровне моста. Волна IV с латенцией около 4,5 мс связана с активностью латеральных лемнисков. Волна V имеет латенцию около 5,2 мс и отражает активность нижнего двухолмия. Фазы VI— VII -- распространение сигналов по таламо-кортикальной радиации, они совпадают с медленной негативностыо, предшествующей корковому ответу. Ранние компоненты нечувствительны к сну, наркозу. Они вызываются звуковыми тонами частотой 2000—4000 Гц. Звуки на частоте ниже 2000 Гц вызывают только волну V.

Стволовые потенциалы — высокочувствительный инструмент для тестирования слуховой функции. Они позволяют определить сохранность слухового анализатора на периферическом и стволовом уровнях. Особенно это важно при обследовании слуха у детей, в том числе у новорожденных, когда словесные реакции не могут быть использованы. Значение этого теста возрастает в связи с тем фактом, что даже незначительная потеря слуха в раннем детстве может привести к существенной задержке развития речи. Стволовые звуковые потенциалы применяют также в клинике для выявления опухолей, определения коматозного состояния, обследования пациентов с демиелинизацией волокон. Если стволовые потенциалы полностью отсутствуют, можно говорить о смерти мозга.

 

Рис. 2. Основные компоненты звукового ВП, зарегистрированного между вертексом и правым сосцевидным отростком в ответ на щелчок (60 дБ над уровнем порога), предъявляемый на правое ухо с частотой 1 Гц.

а — стволовые, б — среднелатентные, в — длиннолатентные компоненты; Н — негативные, П — позитивные компоненты. Для трех групп компонентов временные шкалы и калибровка различны. Начало временных шкал соответствует моменту подачи стимула. Каждая кривая получена в результате усреднения 1024 индивидуальных ответов.

 

Среднелатентные и длиннолатентные компоненты отражают функционирование кортикального уровня слухового анализатора. Среднелатентные компоненты о, По, На, Па, Нб) регистриру­ются от первичной слуховой коры, имеют малую амплитуду, бо­лее лабильны, чем стволовые потенциалы, чувствительны к сну,наркозу. Максимальная их амплитуда вызывается звуковыми то­нами речевого диапазона. Длиннолатентные ответы включают ком­понент Н, с латенцией пика в 100 мс. Потенциал характеризуется полимодальностью и чувствительностью к активации. Кроме того, на него может накладываться другой потенциал — негативность рассогласования (НР), которую связывают с процессами пред-внимания (см. главу «Внимание»). Компонент П2 имеет специфи­ческие и неспецифические составляющие. Волна Н2 также вклю­чает несколько компонентов.

Позже техника усреднения ВП была применена для выявления потенциалов, связанных с движением. Участки ЭЭГ усреднялись от­носительно не стимула, а начала движения. Это дало возможность исследовать моторные потенциалы и потенциалы готовности, пред­шествующие движению. Для обозначения всех групп потенциалов был введен общий для них термин — «потенциалы, связанные с событиями» (ПСС), объединяющий ВП, моторный потенциал и др.

На основе многоканальной регистрации ЭЭГ был разработан метод картирования биотоков мозга. Картирование дает представление о пространственном распределении по коре любого выбранного показателя электрической активности мозга. Это может быть ВП, один из его компонентов или альфа-ритм (или другие частотные полосы спектра ЭЭГ). Значения мощности выбранного показателя подразделяются на уровни. В одном вари­анте каждому уровню приписывается свой цвет и изменение локуса активности выглядит как перемещение определенного цвета по карте. В другом варианте значения показателя, принадлежащие од­ному уровню, соединяются изолиниями, как на топографических картах, на которых можно видеть возвышенности и впадины. Рас­сматриваются карты, полученные в разное время и в разных усло­виях. Этот метод позволяет выявить фокусы активности мозга. Ис­пользуется процедура вычитания одной карты потенциалов из дру­гой, что позволяет связать паттерн ЭЭГ-активности с той или другой когнитивной операцией. На рис. 3 приведен пример карти­рования мозговой активности по основным ритмам ЭЭГ для двух состояний взрослого испытуемого (открытые и закрытые глаза). Измерялась мощность распределения для каждого ритма (дельта, тета, альфа, бета-1, бета-2) в процентах. Показаны карты макси­мального различия и сходства для сравниваемых двух состояний. Открытые глаза, создающие условия для перцептивной активности, вызывают усиление бета-2 с фокусом в теменно-затылочной облас­ти правого полушария, отвечающего за конкретно-образное мыш­ление и сенсорно-пространственные преобразования. Второй фокус активности бета-2 локализован в левой фронтальной коре, функции которой связаны с управлением выполняемой деятельности и рабо­чей памятью. Одновременно открытые глаза усиливают мощность бета-1 в теменно-центральных отведениях обоих полушарий.

Чтобы сжать информацию, содержащуюся в карте с изолиниями, делают следующий шаг: рассчитывают некоторый источник тока — диполь, эквивалентный реальному источнику тока в мозге. Определяют его локализацию, ориентацию, длину. Таким диполем обычно можно объяснить до 80-90% потенциалов, зарегистрированных oт поверхности черепа. Процедура определения диполя включает построение новой карты распределения потенциалов, исходя из характеристик первично рассчитанного диполя. Затем рассчитанную карту сравнивают с исходной картой потенциалов. При их различии включают процедуру итерации, которая вносит коррективы в локализацию и характеристики рассчитанного диполя. В результате расчетная карта потенциалов максимально приближается к исходной. При расчете диполя учитывают различия распространения тока в объемном проводнике для разных типов ткани, находящейся под электродом (кожа, кости черепа, мозговые оболочки, структуры мозга).

 

 

На рис. 4 представлены результаты расчетов дипольных источников для двух компонентов ВП. Наложение данных об источниках ЭЭГ-активности на структурные томограммы мозга конкретного человека, полученные методом структурной магнитно-резонансной томографии, дает наглядное представление о распределении локусов активации по структурам мозга. Соединение двух методов: структурной магнитно-резонансной томографии и дипольной трехмерной локализации источников электрической активности мозга — позволяет получать результаты, близкие тем, которые обычно выявляются только методами функциональной томографии (см. раздел «Томографические методы исследования мозга»).

 







Дата добавления: 2015-06-12; просмотров: 855. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия