Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическая модель и уравнение регрессии





Пусть требуется построить математическую модель процесса, который характеризуется откликом . Предполагается, что существует функция отклика, связывающая выходной параметр с факторами :

, (1)

где – параметры модели.

Так как на отклик оказывают влияния некоторые случайные параметры, значение выходного параметра при фиксированных значениях факторов представляет собой случайную величину. В этом случае функция отклика будет давать не точное значение отклика, а его математическое ожидание (среднее). Поэтому точнее будет переписать уравнение (1) в следующем виде:

. (2)

По аналогии с функцией регрессии уравнение (2) называют уравнением регрессии.

Само по себе уравнение регрессии можно считать математической моделью, однако принято использовать более общий вид математической модели, содержащий кумулятивную ошибку (отклонение) , которая отражает влияние случайных факторов и может входить в нее аддитивно либо иным образом:

.

Для построения математической модели необходимо сделать предположение о ее истинном виде, иначе говоря, постулировать модель. На последующих стадиях будет проводиться проверка, так ли это на самом деле. Обычно предполагается, что модель имеет вид полинома, однако при наличии определенной информации о форме связи отклика с факторами может быть выбран иной, более реалистичный вид модели.

Математическая модель называется линейной, если она линейна относительно ее параметров, например:

,

.

В общем виде линейную модель можно записать следующим образом

. (3)

Нелинейные модели, то есть модели, нелинейные по оцениваемым параметрам, можно подразделить на два класса: внутренне линейные и внутренне нелинейные. Вот примеры нелинейных моделей:

, (4)

, (5)

, (6)

. (7)

Из приведенных примеров (6), (7) являются внутренне нелинейными моделями, а (4), (5) – внутренне линейными, так как с помощью преобразований их можно привести к линейному виду:

,

.







Дата добавления: 2015-06-15; просмотров: 394. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.067 сек.) русская версия | украинская версия