Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическая модель и уравнение регрессии





Пусть требуется построить математическую модель процесса, который характеризуется откликом . Предполагается, что существует функция отклика, связывающая выходной параметр с факторами :

, (1)

где – параметры модели.

Так как на отклик оказывают влияния некоторые случайные параметры, значение выходного параметра при фиксированных значениях факторов представляет собой случайную величину. В этом случае функция отклика будет давать не точное значение отклика, а его математическое ожидание (среднее). Поэтому точнее будет переписать уравнение (1) в следующем виде:

. (2)

По аналогии с функцией регрессии уравнение (2) называют уравнением регрессии.

Само по себе уравнение регрессии можно считать математической моделью, однако принято использовать более общий вид математической модели, содержащий кумулятивную ошибку (отклонение) , которая отражает влияние случайных факторов и может входить в нее аддитивно либо иным образом:

.

Для построения математической модели необходимо сделать предположение о ее истинном виде, иначе говоря, постулировать модель. На последующих стадиях будет проводиться проверка, так ли это на самом деле. Обычно предполагается, что модель имеет вид полинома, однако при наличии определенной информации о форме связи отклика с факторами может быть выбран иной, более реалистичный вид модели.

Математическая модель называется линейной, если она линейна относительно ее параметров, например:

,

.

В общем виде линейную модель можно записать следующим образом

. (3)

Нелинейные модели, то есть модели, нелинейные по оцениваемым параметрам, можно подразделить на два класса: внутренне линейные и внутренне нелинейные. Вот примеры нелинейных моделей:

, (4)

, (5)

, (6)

. (7)

Из приведенных примеров (6), (7) являются внутренне нелинейными моделями, а (4), (5) – внутренне линейными, так как с помощью преобразований их можно привести к линейному виду:

,

.







Дата добавления: 2015-06-15; просмотров: 394. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия