1.Классификация моделей
2.Микроконтроллеры и их применение в системах цифровой обработки сигналов.
3.Компьютерные средства обеспечения звуковых технологий.
4. Осн настройки браузера.
1. Признаки классификаций моделей:
1) по области использования;
2) по фактору времени;
3) по отрасли знаний;
4) по форме представления
1) Классификация моделей по области использования:
Учебные модели – используются при обучении;
Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик
Научно - технические - создаются для исследования процессов и явлений
Игровые – репетиция поведения объекта в различных условиях
Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок)
2) Классификация моделей по фактору времени:
Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных…., строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд.
Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.
3) Классификация моделей по отрасли знаний - это классификация по отрасли деятельности человека: Математические, биологические, химические, социальные, экономические, исторические и тд
4) Классификация моделей по форме представления:
Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты
Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные и вербальные; информационные
Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека.
Вербальные – мысленные модели выраженные в разговорной форме. Используется для передачи мыслей
Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта.
Типы информационных моделей:
Табличные – объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)
Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня
Сетевые – применяют для отражения систем, в которых связи между элементами имеют сложную структуру
По степени формализации информационные модели бывают образно-знаковые и знаковые. Напримеры:
Образно-знаковые модели:
Геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение)
Структурные (таблица, граф, схема, диаграмма)
Словесные (описание естественными языками)
Алгоритмические (нумерованный список, пошаговое перечисление, блок-схема)
Знаковые модели:
Математические – представлены матем.формулами, отображающими связь параметров
Специальные – представлены на спец. языках (ноты, хим.формулы)
Алгоритмические – программы
Признаки классификаций моделей:Классификация моделей по области использования
2. Микроконтро́ллер (англ. Micro Controller Unit, MCU) — микросхема, предназначенная для управления электроннымиустройствами. Типичный микроконтроллер сочетает на одном кристалле функции процессора и периферийных устройств, содержит ОЗУ или ПЗУ. По сути, это однокристальный компьютер, способный выполнять простые задачи. Применение. Использование в современном микроконтроллере достаточного мощного вычислительного устройства с широкими возможностями, построенного на одной микросхеме вместо целого набора, значительно снижает размеры, энергопотребление и стоимость построенных на его базе устройств. Используются в управлении различными устройствами и их отдельными блоками:
в вычислительной технике: материнские платы, контроллеры дисководов жестких и гибких дисков, CD и DVD;
электронике и разнообразных устройствах бытовой техники, в которой используется электронные системы управления — стиральных машинах, микроволновых печах, посудомоечных машинах, телефонах и современных приборах;
В промышленности:
устройств промышленной автоматики — от программируемого реле и встраиваемых систем до ПЛК,
систем управления станками
В то время как 8-разрядные процессоры общего назначения полностью вытеснены более производительными моделями, 8-разрядные микроконтроллеры продолжают широко использоваться. Это объясняется тем, что существует большое количество применений, в которых не требуется высокая производительность, но важна низкая стоимость. В то же время, есть микроконтроллеры, обладающие больши́ми вычислительными возможностями, например цифровые сигнальные процессоры.
3. В технологии мультимедиа выделяются три основные компоненты:
1) аппаратные средства;
2) программные средства;
3) носители мультимедийной информации.
Аппаратные средства мультимедиа
Базовым техническим устройством мультимедиа является компьютер, имеющий высокопроизводительный процессор с тактовой частотой не ниже 1600 МГц, оперативную память не менее 1Гб., жесткий магнитный диск емкостью 200-500 Гбайт и выше, накопитель на гибких магнитных дисках, манипулятор, монитор и видеоадаптер SVGA.
Для реализации мультимедиа компьютер оснащается следующими специальными аппаратными средствами:
• устройства аудио (речевого) и видео ввода и вывода информации;
• высококачественные звуковые (sound-) и видео (video-) платы;
• платы видеозахвата (video grabber), снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК;
• высококачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами;
• сканеры применяются для автоматизации ввода в компьютер печатных текстов и изображений;
• высококачественные принтеры.
К средствам мультимедиа можно отнести и внешние запоминающие устройства большой емкости на оптических и цифровых видеодисках, часто используемые для записи звуковой и видеоинформации.
Для обмена данными между компьютером и разнообразными периферийными устройствами (клавиатурой, манипуляторами, мик-
рофоном, мультимедиа-проектором и т.п.) все чаще используются беспроводные интерфейсы, использующие для передачи данных радио- или инфракрасный диапазоны электромагнитных волн.
Полноценное «вооружение» мультимедиа-ПК требует подключения к нему множества внешних устройств: аудио- и видеоадаптеров, телевизионных и радиотюнеров, дисководов CD-ROM, джойстиков, клавиатуры MIDI и т.д. Все они обслуживаются массой программных утилит-драйверов и нередко конфликтуют друг с другом. В этой связи крупные разработчики компьютеров объединили усилия в создании стандарта Plug and Play (включи и играй). Этот стандарт отражает комплекс программных и аппаратных средств по полностью автоматической настройке конфигурации компьютера в соответствии с используемым с ним оборудованием. Технология РпР предполагает, что достаточно включить компьютер, как все аппаратные и программные средства автоматически оптимально настроятся и станут работать без сбоев и конфликтов.
Аппаратные средства обеспечения звуковых технологий.
Звуковые платы.
Для создания, записи и воспроизведения различных звуковых сигналов: музыки, речи, шумовых эффектов, используются звуковые платы.
В режиме создания звука плата действует как музыкальный инструмент. Звук, создаваемый с помощью звуковой платы, называют «синтезированным». В режиме записи звука плата производит оцифровку звуковых сигналов для последующей их записи в память компьютера. В режиме воспроизведения звука плата работает аналогично цифровому аудиоплейеру, преобразуя считанные из памяти цифровые сигналы в аналоговые звуковые.
Функционально плата содержит несколько модулей:
• модуль для записи и воспроизведения звука;
• модуль синтезатора звука;
• модуль интерфейсов.
Модуль записи и воспроизведения звука. Модуль записи и воспроизведения звука использует для оцифровки звука аналого-цифровые преобразователи (АЦП), а для обратного преобразования - цифро-аналоговые преобразователи. На качество звука и в том, и в другом случае существенно влияет разрядность преобразователей.
Как происходит оцифровка звука? Аналоговый звуковой сигнал в АЦП измеряется через строго определенные последовательные интервалы времени (интервалы дискретизации), измеренные значения его амплитуды квантуются по уровню (заменяются близлежащими дискретными значениями сигнала) и идентифицируются соответствующими двоичными кодами. Разрешающая способность АЦП равна наименьшему изменению аналогового сигнала,
приводящему к изменению цифрового кода, т.е. определяется разрядностью преобразователя, так как чем больше разрядность кода, тем больше разных дискретных значений сигнала и соответственно меньшие интервалы амплитуды аналогового сигнала можно отобразить этим кодом.
Таким образом, качество оцифровки, а соответственно и последующего звучания оцифрованной аудиоинформации при прочих равных условиях зависит от разрядности преобразования и частоты дискретизации:
• разрядность преобразования определяет динамический диапазон сигнала;
• частота дискретизации - верхнюю границу диапазона частот звукового сигнала.
Частота дискретизации (квантования) показывает, сколько раз в секунду берутся выборки сигнала для преобразования в цифровой код. Обычно они лежат в пределах от 4-5 КГц до 45-48 КГц.
Модуль синтезатора звука. Для синтеза звукового сигнала используются два основных метода:
1) синтез с помощью частотной модуляции, или FM-синтез;
2) синтез с использованием таблицы волн (Wave Table), или табличный WT-синтез.
FM-синтез звука осуществляется с использованием специальных генераторов сигналов, называемых операторами. В операторе можно выделить два базовых элемента: фазовый модулятор и генератор огибающей. Фазовый модулятор определяет частоту (высоту) тона, а генератор огибающей - его амплитуду (громкость). Амплитуда сигнала у разных музыкальных инструментов различна. Например, у фортепьяно при нажатии произвольной клавиши амплитуда сигнала сначала быстро возрастает (attack), затем несколько спадает (decay), после чего следует сравнительно короткий равномерный участок (sustain) и, наконец, происходит достаточно медленный спад амплитуды (release). Вышеназванные фазы сигнала реализуются именно генератором огибающей, который по первым буквам английских терминов этих фаз часто называют генератором ADSR. В общем случае для воспроизведения голоса одного инструмента достаточно двух операторов: первый генерирует колебания несущей частоты, т.е. основной тон; второй - модулирующую частоту, т.е. обертоны.
Но современные звуковые платы способны воспроизводить несколько голосов, например синтезатор с 18 операторами может имитировать 9 разных голосов. Правда, многие 16-разрядные звуковые платы используют 4-операторные синтезаторы (например, Yamaha OPL3). Звук, синтезированный FM-методом, имеет обычно некоторый «металлический» оттенок, т.е. не похож на звук настоящего музыкального инструмента.
WT-синтез обеспечивает более качественное звучание. В основе этого синтеза лежат записанные заранее и хранящиеся в памяти образцы звучания музыкальных инструментов (MIDI-файлы). Синтезаторы этого типа (например, Yamaha OPL4) создают музыку путем манипулирования образцами звучания инструментов, «зашитыми» в ПЗУ платы или хранящимися на диске ПК. Лучшие звуковые платы позволяют хранить и использовать до 8 Мбайт выборок. При использовании выборок, загружаемых с диска, хорошая плата должна иметь ОЗУ емкостью не менее 1 Мбайта. Выпускаются также табличные расширители, позволяющие увеличить массив используемых MIDI-файлов.
Модуль интерфейсов включает в себя интерфейс музыкальных инструментов, обычно MIDI (Musical Instrument Digital Interface), и средства воспроизведения звука в соответствующем формате. Кроме того, в него могут входить интерфейсы одного или нескольких дисководов CD-ROM. Через этот модуль можно проигрывать CD-, разговаривать через модем и воспроизводить свою собственную компьютерную музыку.
В состав многих звуковых плат, кроме названных трех модулей, включаются:
• устройство смешения сигналов от различных источников -микшер (управление амплитудой смешиваемых сигналов выполняется обычно программным способом);
• модемный и игровой порты, последний обеспечивает качественное звуковое сопровождение компьютерных игр;
• усилители мощности сигнала с регулятором громкости (такие платы имеют два выхода: линейный - до усилителя и конечный -после усилителя).
Современные качественные звуковые платы соответствуют стандарту Basic General MIDI, предусматривающему поддержку 128 инструментов, и многотонального исполнения - как минимум 16 каналов одновременно.
Как показано на рис. 1.2, конструктивно аудиоадаптер выглядит как обычная печатная плата с набором радиокомпонентов.
Печатная плата вставляется в разъем расширения (слот) материнской платы ПК и соединяется с CD-ROM-драйвом двумя кабелями - широким ленточным кабелем интерфейса и тонким звуковым кабелем с выхода сигналов CD-ROM-драйва.
На сторону платы, выходящую на заднюю стенку системного блока ПК, выводятся разъемы для подключения микрофона, стереосигналов линии и выхода стереосигналов.
Современный высококачественный звук обеспечивается цифровым форматом раздельной записи и воспроизведения нескольких каналов. Например, в популярном на сегодняшний день формате многоканального звука Dolby Digital (АС-3) используется 6-канальный (5+1) цифровой способ записи.