Невозможен тепловой вечный двигатель второго рода, т.е. двигатель, совершающий механическую работу за счет охлаждения какого-либо одного тела
Объяснение необратимости процессов в природе имеет статистическое (вероятностное) истолкование. Чисто механические процессы (без учета трения) обратимы, т.е. инвариантны (не изменяются) при замене t® -t. Уравнения движения каждой отдельно взятой молекулы также инвариантны относительно преобразования времени, т.к. содержат только силы, зависящие от расстояния. Значит причина необратимости процессов в природе в том, что макроскопические тела содержат очень большое количество частиц. Макроскопическое состояние характеризуется несколькими термодинамическими параметрами (давление, объем, температура и т.д.). Микроскопическое состояние характеризуется заданием координат и скоростей (импульсов) всех частиц, составляющих систему. Одно макроскопическое состояние может быть реализовано огромным числом микросостояний. Чем больше N1, тем больше вероятность данного макросостояния, т.е. тем большее время система будет находиться в этом состоянии. Эволюция системы происходит в направлении от маловероятных состояний к более вероятным. Т.к. механическое движение - это упорядоченное движение, а тепловое - хаотическое, то механическая энергия переходит в тепловую. При теплообмене состояние, в котором одно тело имеет более высокую температуру (молекулы имеют более высокую среднюю кинетическую энергию), менее вероятно, чем состояние, в котором температуры равны. Поэтому процесс теплообмена происходит в сторону выравнивания температур. Энтропия - мера беспорядка. S - энтропия. Уравнение Больцмана: , где k - постоянная Больцмана. Это уравнение раскрывает статистический смысл законов термодинамики. Величина энтропии во всех необратимых процессах увеличивается. С этой точки зрения жизнь - это постоянная борьба за уменьшение энтропии. Энтропия связана с информацией, т.к. информация приводит к порядку. Энтропия - функция состояния системы. В термодинамике - это величина, определяемая соотношением: где S- энтропия. Т.е. изменение энтропии равно количеству теплоты, переданному в процессе, к температуре, при которой происходил этот процесс. 2. Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы). Первая реакция такого рода была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году: При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков урана-235, каждый из которых имеет массу несколько ниже критической. Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. Термоядерные реакции — это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией. Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер. Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.
|