Студопедия — Воздействие электромагнитными волнами
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Воздействие электромагнитными волнами






Физиотерапевтические методы, основанные на применении электромагнитных волн СВЧ-диапазона, в зависимости от длины волны получили два названия: микроволновая терапия (частота 2375 МГц, длина волны 12,6 см) и ДЦВ-терапия, т. е. терапия де­циметровых волн (частота 460 МГц, длина волны 65,2 см).

Наиболее разработана в настоящее время теория о тепловом действии СВЧ-полей на биологические объекты. Электромагнит­ная волна поляризует молекулы вещества и периодически пере­ориентирует их как электрические диполи. Кроме того, электро­магнитная волна воздействует на ионы биологических систем и вызывает переменный ток проводимости. Таким образом, в диэ­лектрике, находящемся в электромагнитном поле, происходит как изменение поляризации диэлектрика, так и протекание токов проводимости. Все это приводит к нагреванию вещества. Большое значение имеют диэлектрические потери, обусловленные пере­ориентацией молекул воды (γ-дисперсия, см. § 14.4). В связи с этим максимальное поглощение энергии микроволн происходит в таких тканях, как мышцы и кровь, а в костной и жировой ткани воды меньше, они меньше и нагреваются.

На границе сред с разными коэффициентами поглощения элек­тромагнитных волн, например на границе тканей с высоким и ни­зким содержанием воды, могут возникнуть стоячие волны, обус­ловливая местный перегрев тканей. Наиболее подвержены пере­греву ткани с недостаточным кровоснабжением и, следовательно, плохой терморегуляцией, например хрусталик глаза, стекловид­ное тело и др.

Электромагнитные волны могут влиять на биологические про­цессы, разрывая водородные связи и влияя на ориентацию макро­молекул ДНК и РНК.

При попадании электромагнитной волны на участок тела проис­ходит ее частичное отражение от поверхности кожи. Степень отра­жения зависит от различия диэлектрических проницаемостей воз­духа и биологических тканей. Если облучение электромагнитными волнами осуществляется дистанционно (на расстоянии), то может отражаться до 75% энергии электромагнитных волн. В этом случае невозможно по мощности, генерируемой излучателем, судить об энергии, поглощаемой пациентом в единицу времени. При кон­тактном облучении электромагнитными волнами (излучатель со­прикасается с облучаемой поверхностью) генерируемая мощность соответствует мощности, воспринимаемой тканями организма.

Глубина проникновения электромагнитных волн в биологиче­ские ткани зависит от способности этих тканей поглощать энер­гию волн, которая, в свою очередь, определяется как строением тканей (главным образом содержанием воды), так и частотой электромагнитных волн. Так, сантиметровые электромагнитные волны, используемые в физиотерапии, проникают в мышцы, ко­жу, биологические жидкости на глубину около 2 см, а в жир, кос­ти — около 10 см. Для дециметровых волн эти показатели при­близительно в 2 раза выше.

Учитывая сложный состав тканей, условно считают, что при микроволновой терапии глубина проникновения электромагнитных волн равна 3—5 см от поверхности тела, а при ДЦВ-терапии — до 9 см.

 

РАЗДЕЛ 5 Медицинская электроника

 

Э лектроника. Это понятие ши­роко распространено в настоящее время. Являясь технической наукой, электроника основывается прежде всего на достижениях физики. Можно смело сказать, что без электронной аппаратуры сегодня невозможны ни диагностика заболеваний, ни эффектив­ное их лечение. В разделе излагаются лишь некоторые, наиболее существенные аспекты общей и медицинской электроники и описывается наиболее характерная медицинская электронная ап­паратура. Некоторые приборы и аппараты медицинской электро­ники представлены в других разделах

 

ГЛАВА 16

 

Содержание электроники. Электробезопасность. Надежность медицинской электронной аппаратуры

В главе наряду с общим содержанием электроники рассмат­риваются важные практические вопросы: электробезопас­ность и надежность медицинской электронной аппаратуры.16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов

 

 

§ 16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов

 

Физика, как и любая другая наука, развивалась и развивается, в связи с потребностями общества, ее прогресс стимулируется практическими задачами. В свою очередь, развитие физики спо­собствует решению практических, в том числе и технических проблем. Так, например, в результате достижений в области ис­следований электромагнитных явлений получили бурное разви­тие соответствующие отрасли техники: электро- и радиотехника. Постепенно многие разделы радиотехники стали именовать ра­диоэлектроникой, или электроникой.

Термин «электроника» в значительной степени условный, ему трудно дать четкое определение. Правильнее всего, вероятно, под электроникой понимать область науки и техники, в которой рассматриваются работа и применение электровакуумных,ионных и полупроводниковых устройств (приборов).

Электронику в широком смысле слова (общую электронику) можно подразделить на группы либо по области применения, либо по классу используемых устройств, либо по категории теоретических вопросов. Так выделяют физическую электронику, имея в виду раздел физики, рассматривающий электропроводимость тел, контактные и термоэлектронные явления; под технической электроникой понимают те ее разделы, в которых описываются устройства приборов и аппаратов и схемы их включения; полу­проводниковой электроникой называют то, что относится к при­менению полупроводниковых приборов, и т. п.

Иногда всю электронику подразделяют на три крупные облас­ти: вакуумная электроника, которая охватывает вопросы созда­ния и применения электровакуумных приборов (электронные лампы, фотоэлектронные устройства, рентгеновские трубки); твердотельная электроника, которая охватывает вопросы созда­ния и применения полупроводниковых приборов, в том числе и интегральных схем, квантовая электроника — специфический раздел электроники, имеющий отношение к лазерам и мазерам.

Все эти примеры, с одной стороны, дают представление о со­держании электроники, с другой стороны, лишний раз отмечают неопределенность ее границ.

Электроника — прикладная отрасль знаний. Одно из распрост­раненных применений электронных устройств связано с диагнос­тикой и лечением заболеваний. Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а также устройство со­ответствующей аппаратуры, получили название медицинской электроники.

Медицинская электроника основывается на сведениях из фи­зики, математики, техники, медицины, биологии, физиологии и других наук, она включает в себя биологическую и физиологиче­скую электронику.

Применения электроники в медицине многообразны, ибо это постоянно расширяющаяся область. В настоящее время многие традиционно «неэлектрические» характеристики — температуру, смещение тела, биохимические показатели и др. — при измерени­ях преобразуют в электрический сигнал. Информацию, представ­ленную электрическим сигналом, удобно передавать на расстоя­ние и надежно регистрировать. Можно выделить следующие ос­новные группы электронных приборов и аппаратов, используемых для медико-биологических целей.

Устройства для получения (съема), передачи и регистрации медико-биологической информации. Такая информация может быть не только о процессах, происходящих в организме (биологи­ческих тканях, органах, системах), но и о состоянии окружаю­щей среды (санитарно-гигиеническое назначение), о процессах, происходящих в протезах, и т. д. Сюда относится большая часть диагностической аппаратуры: баллистокардиографы, фонокарди-

ографы, реографы и др. Для подавляющего большинства этих приборов в радиотехническом отношении характерно наличие усилителей электрических сигналов.

К этой группе можно отнести и электромедицинскую аппара­туру для лабораторных исследований, например рН-метр.

Электронные устройства, обеспечивающие дозирующее воздей­ствие на организм различными физическими факторами (ультра­звук, электрический ток, электромагнитные поля и др.) с целью ле­чения: аппараты микроволновой терапии, аппараты для электрохи­рургии, кардиостимуляторы и др. С физической точки зрения эти устройства являются генераторами различных электрических сиг­налов.

Кибернетические электронные устройства: а) электронные вы­числительные машины для переработки, хранения и автоматиче­ского анализа медико-биологической информации; б) устройства для управления процессами жизнедеятельности и автоматического регулирования состоянием окружающей человека среды; в) элек­тронные модели биологических процессов и др.

Применение электронных медицинских приборов и аппаратов повышает эффективность диагностики и лечения и увеличивает производительность труда медицинского персонала.







Дата добавления: 2015-08-30; просмотров: 524. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия