Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Различные виды электронных генераторов. Генератор импульсных колебаний на неоновой лампе




В медицине электронные генераторы находят три основных применения:

— — — в физиотерапевтической электронной аппаратуре;

— — — в электронных стимуляторах;

— — — в отдельных диагностических приборах, например в реографе.

Основанием для классификации генераторов электрических ко­лебаний могут быть разные признаки: разновидность техническо­го устройства, область частот, уровень мощности и т. п. Для прак­тического использования генераторов в медицине весьма сущест­венна форма генерируемых электрических колебаний. В этом отношении они подразделяются на генераторы гармонических (си­нусоидальных) и импульсных (релаксационных) колебаний.

В качестве некоторого примера рассмотрим работу генератора импульсных (релаксационных) колебаний на неоновой лампе. Од­на из возможных схем такого генератора показана на рис. 18.6. Здесь Л — неоновая лампа. Такие лампы «зажигаются» при неко­тором строго определенном значении напряжения U3, а гаснут при меньшем напряжении Ur. Процесс начинается с зарядки кон­денсатора С. На графике зависимости выходного напряжения от времени (рис. 18.7), этот этап показан отрезком ОА, отвечающим уравнению (14.17). В точке А напряжение на конденсаторе дос­тигает значения U3, достаточного для ионизации газа в неоно­вой лампе, лампа загорается и конденсатор разряжается через нее [см. (14.15)]. В точке В напряжение на лампе станет рав

 
 

ным UT, лампа гаснет и ее сопротивле­ние значительно возрастает. Конден­сатор опять подзаряжается, и процесс повторяется.

Как видно из (14.17), скорость воз­растания напряжения в такой схеме можно изменять, изменяя параметры R и С. Так, увеличение сопротивления приведет к увеличению времени τ,

участок ОА станет более пологим. Изменение напряжения на уча­стке АВ происходит при разряде неоновой лампы и зависит, следо­вательно, от ее характеристик. Подбирая параметры схемы, мож­но реальный график (см. рис. 18.7) приблизить к идеальному, на­зываемому пилообразным напряжением (рис. 18.8). График зависимости этого напряжения от времени напоминает профиль пилы. В течение времени Тг напряжение линейно возрастает от U1 до U2, затем за время Т2 оно линейно уменьшается до минимально­го значения. Если требуется более точное приближение к линейно­му изменению напряжения со временем, то применяют более сложные схемы. Пилообразное напряжение используется в генера­торе развертки электронного осциллографа (см. § 18.8).


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-08-30; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.017 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7