Оптической разностью хода волн.
На основании (19.7) и (19.8) получим связь между разностью фаз и оптической разностью хода интерферирующих волн: Используя законы сложения колебаний (см. § 5.3.) и соотношение (19.9), получаем условия максимума и минимума интенсивности света при интерференции — соответственно
Следовательно, максимум при интерференции наблюдается в тех точках, для которых оптическая разность хода равна целому числу длин волн (четному числу полуволн), минимум — в тех точках, для которых оптическая разность хода равна нечетному числу полуволн. ____________________________ 1 Схематичность рис. 19.3 не позволяет показать разные среды распространения для различных волн. 2 Полезно заметить, что так как Образование когерентных волн и интерференция происходят также при попадании света на тонкую прозрачную пластинку или пленку. Пучок света падает на плоскопараллельную пластинку (рис. 19.4). Луч 1 из этого пучка попадает в точку А, частично отражается (луч 2), частично преломляется (луч AM). Преломленный луч испытывает отражение на нижней границе пластинки в точке М. Отраженный луч, преломившись в точке В, выходит в первую среду (луч 3). Лучи 2 и 3 образованы от одного луча, поэтому они когерентны и будут интерферировать. Найдем оптическую разность хода лучей 2 и 3. Для этого из точки В проведем нормаль ВС к лучам. От прямой ВС до встречи лучей их оптическая разность хода не изменится, линза или глаз не внесут дополнительной разности фаз. До расхождения в точке А эти лучи в совокупности с другими, параллельными им, не показанными на рис. 19.4, формировали луч 1 и поэтому, естественно, имели одинаковую фазу. Луч 3 прошел расстояние так как где i — угол падения, г — угол преломления. Из
Учитывая эти равенства, а также (19.13), получаем Тогда оптическая разность хода интерферирующих волн равна Рис.19.4
Если бы оба луча 2 vs. 3 теряли пол волны, то это не изменило бы выражения для Так как
Для максимума интерференции [см. (19.10), (19.16)] имеем Для минимума интерференции [см. (19.11), (19.16)] имеем2
Рис. 19.5
проходящий (поглощением здесь пренебрегаем), причем если отраженный максимален, то проходящий минимален, и наоборот. Интерференция при отражении наблюдается более отчетливо, чем в проходящем свете, что обусловлено существенным различием интенсивностей отраженного и проходящего лучей. Если принять, что на границе раздела прозрачных сред отражается около 5% падающей энергии, то где Из (19.19) и (19.20) имеем что означает приближенное равенство амплитуд интерферирующих лучей при отражении: условие минимума соответствует почти полной темноте. Делая аналогичный расчет для проходящего света (рис. 19.5), получаем или для амплитуд Из (19.22) видно, что в проходящем свете интерферируют волны с существенно различными амплитудами, поэтому максимумы и минимумы мало отличаются друг от друга и интерференция слабо заметна. Проанализируем зависимости (19.17) и (19.18). Если на тонкую плоскопараллельную пластинку под некоторым углом падает параллельный пучок монохроматического излучения, то, согласно этим формулам, пластинка в отраженном свете выглядит яркой или темной. При освещении пластинки белым светом условия максимума и минимума выполняются для отдельных длин волн, пластинка станет окрашенной, причем цвета в отраженном и проходящем свете будут дополнять друг друга до белого.
При освещении пластинки переменной толщины белым светом получаются разноцветные пятна и линии: окрашенные мыльные пленки, пленки нефти и масла на поверхности воды, переливчатые цвета крыльев некоторых насекомых и птиц. В этих случаях не обязательна полная прозрачность пленок. Особый практический интерес имеет интерференция в тонких пленках в связи с созданием устройств, уменьшающих долю световой энергии, отраженной оптическими системами, и увеличивающих, следовательно, энергию, поступающую к регистрирующим системам — фотопластинке, глазу и т. п. С этой целью поверхности оптических систем покрывают тонким слоем оксидов металлов так, чтобы для некоторой средней для данной области спектра длины волны был минимум интерференции в отраженном свете. В результате возрастает доля прошедшего света. Покрытие оптических поверхностей специальными пленками называют просветлением оптики, а сами оптические изделия с такими покрытиями — просветленной оптикой. Если на стеклянную поверхность нанести ряд специально подобранных слоев, то можно создать отражательный светофильтр, который вследствие интерференции будет пропускать или отражать излучение в определенном интервале длин волн.
2 Для того чтобы при максимумах и минимумах сохранить для k те же значения (0, 1, 2 и т. д.), формулу (19.16) для
§ 19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе Интерференцию света используют в специальных приборах — интерферометрах — для измерения с высокой степенью точности длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей. На рис. 19.7 изображена принципиальная схема интерферометра Майкельсона, который относится к группе двухлучевых, так как световая волна в нем раздваивается1 и обе ее части, пройдя разный путь, интерферируют. Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тонким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова. Луч 2 доходит до зеркала /, отражается, преломляется в пластине А и частично выходит из пластины — луч 2'. Луч 3 из точки О идет к зеркалу //, отражается, возвращается к пластине А, где частично отражается, — луч 3'. Лучи 2' и 3', попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована. Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую длину путей сделать одинаковой, на пути луча 3 устанавливают прозрачную пластину В, аналогичную А, для компенсации двух путей, пройденных лучом 2 через пластину А. В этом случае наблюдается максимум интерференции. Если одно из зеркал сдвинуть на расстояние Интерферометр Майкельсона применяют для измерения показателя преломления. На пути лучей 2 и 3 устанавливают одинаковые кюветы К (показаны штриховыми линиями на рис. 19.7), одна из которых наполнена веществом с показателем преломления n1 а другая — с п2. Оптическая разность хода лучей
Рис. 19.7 где I — длина однократного пути луча в среде, заполняющей кюветы; так как лучи проходят кювету дважды, то расстояние равно 21. Предположим, что вследствие этой разности хода интерференционная картина смещается на Приравнивая (19.23) и (19.24), получаем Если считать, что смещение на 0,1 полосы (к = 0,1) может быть зафиксировано, то, например, при Как видно, интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой. Интерференционный рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов. С использованием интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, способствовавших созданию специальной теории относительности. Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа, используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.
Рис. 19.8
1 1 Строго говоря, вследствие многократных отражений может образоваться более чем два луча, однако их интенсивности незначительны 2 2 Вследствие разных углов падения лучей из S на пластину А или не строгой перпендикулярности зеркал I и II интерференционная картина практически всегда представлена полосами (полосы равного наклона или равной толщины соответственно). Этот вопрос подробно не рассматривается. § 19.4. Принцип Гюйгенса—Френеля Объяснение и приближенный расчет дифракции света можно осуществить, используя принцип Гюйгенса — Френеля. Согласно Гюйгенсу, каждая точка волновой поверхности, которой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 19.9; Sl и S2 — волновые поверхности соответственно в моменты tt и t2; t2 > tj). Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции. В таком обобщенном виде эти идеи получили название принципа Гюйгенса — Френеля.
Рис. 19.9
просты. Волновую поверхность при этом разбивают на отдельные участки (зоны Френеля), расположенные определенным образом, что упрощает математические операции.
§ 19.5. Дифракция на щели в параллельных лучах На узкую длинную щель, расположенную в плоской непрозрачной преграде MN, нормально падает плоскопараллельный пучок монохроматического света (рис. 19.10; АВ = а — ширина щели; L — собирающая линза, в фокальной плоскости которой рас- -положен экран Э для наблюдения дифракционной картины). Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптической оси линзы. Дифракция света на щели существенно изменяет явление. Рис. 19.10 Будем считать, что все лучи пучка света исходят от одного удаленного источника1 и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозможным направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. 19.10 показаны только вторичные волны, распространяющиеся под углом а к направлению падающего пучка и нормали к решетке. Линза соберет эти волны в точке О' экрана, где и будет наблюдаться их интерференция. (Положение точки О' получают как пересечение с фокальной плоскостью побочной оси СО' линзы, проведенной под углом а.) Чтобы узнать результат интерференции вторичных волн, проделаем следующие построения. Проведем перпендикуляр AD к направлению пучка вторичных волн. Оптические пути всех вторичных волн от AD до О' будут одинаковыми, поскольку линза не вносит добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к AD, будет сохранена и в точке О'. Разобьем BD на отрезки, равные l / 2. В случае, показанном на рис. 19.10, получено три таких отрезка: \ВВ2\ = \В2Вг\ = \B1D\ = = l /2. Проведя из точек В2 и В1 прямые, параллельные AD, разделим АВ на равные зоны Френеля: \ААг\ = \А1А2\ = \А2В\. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет Число зон, укладывающихся в щели, зависит от длины волны Направление, соответствующее углу а = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе. Если щель АВ можно разбить на четное число зон Френеля, то наблюдается минимум интенсивности света: Таким образом, на экране Э получится система светлых (максимум) и темных (минимум) полос, центрам которых соответствуют условия (19.26) и (19.27), симметрично расположенных влево и вправо от центральной (а = 0), наиболее яркой, полосы. Интенсивность I остальных максимумов быстро убывает по мере удаления от центрального максимума (рис. 19.11). Если щель освещать белым светом, то на экране Э [см. (19.26), (19.27)] образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света, так как при а = 0 усиливается свет всех длин волн. Рис. 19.11 Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей поступление светового потока, но перераспределителем этого потока в пространстве. Чтобы понять влияние соотношения между шириной щели и длиной волны на возможность наблюдения дифракционной картины, рассмотрим некоторые частные случаи: 1) имеем sin a ~ 0 практически для всех максимумов, и дифракция при этом не наблюдается. Этот случай соответствует достаточно широкой, по сравнению с длиной волны, щели. Так, например, не удается осуществить дифракцию в комнате при прохождении света через окно; 2) Отсюда следует, что при заданном условии sin а формально превышает единицу, чего не может быть. Практически в этом случае вместо системы максимумов и минимумов весь экран будет слабо освещен.
1 Практически точечный источник можно расположить в фокусе линзы, не показанной на рис. 19.10, так, что от линзы будет распространяться параллельный пучок когерентных волн.
§ 19.6. Дифракционная решетка. Дифракционный спектр Дифракционная решетка — оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.
Рис. 19.12
Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину. Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 19.13). Выберем некоторое направление вторичных волн под углом а относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода где Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом а от соответственных точек соседних щелей, равна
Рис. 19.13
В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: E1 Е2 и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N - 1 добавочных минимумов, удовлетворяющих условию
Рис. 19.14
Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра. Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий. Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому рас- Рис. 19.16 стоянию da между двумя линиями спектра, длины волн которых различаются на единицу Дифференцируя (19.29) и используя только положительные значения величин, получаем Из последних двух равенств имеем Так как обычно используют небольшие углы дифракции, то Возможность различать близкие спектральные линии зависит не 1?олько от ширины спектра, или угловой дисперсии, но и от ширины Спектральных линий, которые могут накладываться друг на друга. Принято считать, что если между двумя дифракционными максимумами одинаковой интенсивности находится область, где суммарная интенсивность составляет 80% от максимальной, то спектральные линии, которым соответствуют эти максимумы, уже разрешаются. При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считает Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены: Так, если имеются две близкие линии с длинами волн Условие главного максимума для первой волны С ним совпадает ближайший минимум для второй волны, условие которого Приравнивая правые части последних двух равенств, имеем откуда [с учетом (19.36)] Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны Для ответа на этот вопрос приравняем (19.35) и (19.37), Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм. Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, Проведем перпендикуляры А'В к падающим лучам и АВ' ко вторичным волнам, идущим под углом d= ВВ'-АА. (19.38) Из D АА'В имеем АА' = АВ sin (3 = с sin р. Из D ВВ'А находим ВВ' = АВ sin a = = с sin а. Подставляя выражения для АА' и ВВ' в (19.38) и учитывая условие для главных максимумов, имеем с (sin а - sin Р) = + kX. (19.39) Центральный главный максимум соответствует направлению падающих лучей (а = b). Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы. В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.
______________________ 1 Из формулы (19.29) видно, что максимальное значение
§ 19.7. Основы рентгеноструктурного анализа Основная формула дифракционной решетки (19.29) может быть использована не только для определения длины волны, но и для решения обратной задачи — нахождения постоянной дифракционной решетки по известной длине волны. Такая скромная применительно к обычной дифракционной решетке задача подводит к практически важному вопросу — измерению параметров кристаллической решетки посредством дифракции рентгеновских лучей, что является содержанием рентгеноструктурного анализа. CF — перпендикуляры к падающим и отраженным лучам соответственно. Разность хода отраженных лучей 1’ и 2'
(19.41) где t — межплоскостноерасстояние. Максимумы интерференции при отражении возникают в случае, когда разность хода равна целому числу длин волн: Это условие Брэгга — Вульфа. При падении монохроматического рентгеновского излучения на кристалл под разными углами наибольшее отражение (максимум) будет для углов, отвечающих условию (19.42). При регистрации под определенным углом скольжения пучка рентгеновского излучения со сплошным спектром максимум дифракции будет выполняться для длин волн, удовлетворяющих условию Брэгга—Вульфа. П. Дебаем и П. Шеррером был предложен метод рентгено-структурного анализа, основанный на дифракции монохроматических рентгеновских лучей в поликристаллических телах (обычно спрессованные порошки). Среди множества кристаллитов всегда найдутся такие, для которых одинаковы Дифракцию рентгеновских лучей наблюдают т
|