Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

А. Проверка параллельности оси зрительной трубы плоскости лимба.





1.Установить секстан на ящик и на края лимба установить диоптры так, чтобы соединяющаяихлиния была параллельна оси трубы;

2. Привести в створ срезов диоптров ориентир, удален­ный на 50 м и бо­лее (удобно использовать линию видимого горизонта). При наблюде­нии в трубу этот ориентир должен находиться в сере­дине сетки нитей трубы (Рис. 5.8). Если ориен­тир не в середине сетки, то парал­лельность оси тру­бы нарушена (Рис. 5.7).

 

Рис. 5.7. Зрительная труба не параллельна параллельна 5.8 плоскости лимба.

 

3. Если парал­лельность оси тру­бы нарушена (Рис. 5.7), то необходимо отверткой поджать или отдать регулировочные винты на кольце трубы и привести ори­ентир в середину поля зрения трубы.

 

22. Навигационный секстан. Его устройство и правила обращения с ним. Порядок выверки перпендикулярности большого зеркала к плоскости лимба.

1. Осторожно за раму вынуть секстан из ящика и, взяв его за ручку в правую руку, произвести осмотр.

2. Отфокусировать по видимому горизонту трубу и установить ее на место. Окулярную часть дневной трубы установить так, чтоб одна пара ее нитей была параллельна, а другая - перпендикулярна плоскости лимба.

3. Установить лупу осветителя по глазу, а для наблюдений Солнца подобрать светофильтры.

4. Произвести выверки навигационного секстана.

6. Определить поправку индекса.







Дата добавления: 2015-08-30; просмотров: 597. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия