Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Социометрическая матрица.





Ф.И.О. Иванов Петров Сидоров ВС ОС ОВ ОО
Иванов   2 ()          
Петров 1              
Сидоров 3 ()   1 2        
Обозначение показателей                
ВП 2 1 0          
ОП                
ОВ                
ОС                
ВВ                
ВО                

В итоговых нижних строках и правых столбцах используются следующие обозначения:

  • ВС – количество выборов, сделанных данным человеком;
  • ОС – количество отклонений, сделанных данным человеком;
  • ВП – сумма выборов, полученных данным человеком;
  • ОП – сумма отклонений, полученных данным человеком;
  • ОВ – количество ожидаемых выборов;
  • ОО – количество ожидаемых отклонений;
  • ВВ – количество взаимных выборов;
  • ВО – количество взаимных отклонений.

В нижние строки матрицы заносятся результаты о количестве полученных выборов (независимо, в какую очередь – 1, 2, 3-ю) и отклонений, о количестве взаимных выборов и отклонений, о количестве ожидаемых от данного лица выборов и отклонений.

В крайние правые столбцы матрицы заносятся результаты о количестве сделанных выборов и отклонений, о количестве ожидаемых данным лицом выборов и отклонений.

Число выборов, полученных каждым человеком, является мерилом положения его в системе личных отношений, измеряет его «социометрический статус». Люди, которые получают наибольшее количество выборов, пользуются наибольшей популярностью, симпатией, их именуют «звездами». Обычно к группе «звезд» по числу полученных выборов относят тех, кто получает 6 и более выборов (если, по условиям опыта каждый член группы делал 3 выбора). Если человек получает среднее число выборов, его относят к категории «предпочитаемых», если меньше среднего числа выборов (1-2 выбора), то к категории «пренебрегаемых», если не получил ни одного выбора, то к категории «изолированных», если получил только отклонения – то к категории «отвергаемых».

С целью более достоверного выделения «звезд» и «пренебрегаемых» используют некоторые методы статистического анализа. В ходе статистического анализа полученного первичного материала устанавливают критические значения количества выборов, границы доверительного интервала, за пределами которого полученные выборы можно считать статистически достоверными. Эмпирические кривые распределения выборов часто асимметричны и апроксимируются биноминальным законом распределения. Экспериментальная ситуация социометрического обследования весьма близка к ситуации последовательных дихотомических выборов.

Формулы расчёта

Верхняя и нижняя критические границы рассчитываются по следующей общей формуле:

где Х – критическое значение количества V(М) выборов; t – поправочный коэффициент, учитывающий отклонение эмпирического распределения от теоретического; b – среднее отклонение; M – среднее количество выборов, приходящихся на одного человека.

Коэффициент t определяется по специальной таблице на основе предварительного вычисления другого коэффициента ОD свидетельствующего о степени отклонения распределения выборов от случайного:

где p – оценка вероятности быть выбранным в данной группе; q – оценка вероятности оказатьcя отвергнутым в данной группе; b – отклонение количества полученных индивидами выборов от среднего их числа, приходящегося на одного члена группы;

p и q, в свою очередь, определяются при помощи следующих формул:

,

где N – количество участников в группе; M– среднее количество выборов, полученных одним участником.

M вычисляется при помощи формулы:

где d – общее количество выборов, сделанных членами данной группы.

b определяется по формуле:

Пример процедуры расчётов

Проиллюстрируем процедуру расчетов. Исследовали группу в 31 человек, участники которой в общей сложности сделали 270 выборов. Найдем среднее количество выборов, приходящихся на одного человека в группе:

Определим оценку вероятности быть избранным в данной группе:

Вычислим среднее квадратное отклонение:

Подсчитаем коэффициент асимметричности:

Теперь по таблице определим величину t отдельно для правой и левой частей распределения. В левой части таблицы приведены значения для нижней границы доверительного интервала, а в правой – для верхней. Для обеих границ (верхней и нижней) значения даны для трех различных вероятностей допустимой ошибки:

; ; ;

Таблица значений коэффициента асимметричности по Сальвосу

Коэффициент асимметричности ОD Вероятность ошибки p Коэффициент асимметричности ОD Вероятность ошибки p
0,05 0,01 0,001 0,05 0,01 0,001
0,0 -1,64 -2,33 -3,09 0,0 1,64 2,33 3,09
0,1 -1,62 -2,25 -2,95 0,1 1,67 2,40 3,23
0,2 -1,59 -2,18 -2,81 0,2 1,70 2,47 3,38
0,3 -1,56 -2,10 -2,67 0,3 1,73 2,54 3,52
0,4 -1,52 -2,03 -2,53 0,4 1,75 2,62 3,67
0,5 -1,49 -1,95 -2,40 0,5 1,77 2,69 3,81
0,6 -1,46 -1,88 -2,27 0,6 1,80 2,76 3,96
0,7 -1,42 -1,81 -2,14 0,7 1,82 2,83 4,10
0,8 -1,39 -1,73 -2,00 0,8 1,84 2,89 4,24
0,9 -1,35 -1,66 -1,90 0,9 1,86 2,96 4,39
1,0 -1,32 -1,59 -1,79 1,0 1,88 3,02 4,53
1,1 -1,28 -1,52 -1,68 1,1 1,89 3,09 4,67

Поскольку в таблице нет значения, равного 0,16, а есть только значения 0,1 и 0,2, то выберем поправочные коэффициенты, находящиеся между этими табличными значениями.

Для ОD=0,1 поправочный коэффициент составит (-1,62), а для ОD=0,2 – (-1,59). С учетом того, что реальное значение ОD=0,16, возьмем поправочный коэффициент t промежуточного значения и примем его равным (-1,60) (левая половина таблицы).

Проделав подобную операцию и в правой части таблицы, получим второй поправочный коэффициент 1,69, величина которого расположена между табличными значениями для ОD=0,1 и ОD=0,2. Верхнюю критическую границу вычислим, подставив в формулу значение t из правой части таблицы: Xверхн = 9,0 + 1,69 х 2,51 = 13,24.

Для определения нижней границы доверительного интервала используем значение t, взятое из левой части таблицы: Хнижн = 9,0 – 1,6 x 2,51 = 4,98.

В связи с тем, что количество полученных выборов – это всегда целое число, округлим полученные значения до целых чисел.

Теперь можно сделать вывод, что все испытуемые изученной группы, получившие 14 и более выборов, имеют высокий социометрический статус, являются «звездами», а испытуемые, получившие 4 и меньше выборов, – низкий статус, причем, утверждая это, допускаем ошибку не более 5 %.

Если допускать ошибку в 1 %, то из таблицы значения t берем иные:

Xверхн = 9,0 + 3,32 х 2,51 = 17,33; Хнижн = 9,0 – 2,84 x 2,51 = 1,87.

Округлим до целых чисел: Xверхн = 18; Хнижн = 1. Таким образом, допуская ошибку не более, чем на 1 %, можно утверждать, что лидерами являются только те, кто получил не менее 18 выборов, а низкий статус – у испытуемых, получивших меньше двух выборов.


Анализ социоматрицы по каждому критерию дает достаточно наглядную картину взаимоотношений в группе. Могут быть построены суммарные социоматрицы, дающие картину выборов по нескольким критериям, а также социоматрицы по данным межгрупповых выборов.

Основное достоинство социоматрицы – возможность представить выборы в числовом виде, что в свою очередь позволяет проранжировать порядок влияний в группе. На основе социоматрицы строится социограмма – карта социометрических выборов (социометрическая карта), производится расчет социометрических индексов.

Социоматрица - это матрица связей, с помощью которой анализируются внутриколлективные отношения. В социоматрицу в форме числовых значений и символов заносится информация, полученная в ходе опроса.

Анализ социоматрицы по каждому критерию дает достаточно наглядную картину взаимоотношений в группе. Могут быть построены суммарные социоматрицы, дающие картину выборов по нескольким критериям, а также социоматрицы по данным межгрупповых выборов.

Основное достоинство социоматрицы – возможность представить выборы в числовом виде, что в свою очередь позволяет проранжировать порядок влияний в группе. На основе социоматрицы строится социограмма – карта социометрических выборов (социометрическая карта), производится расчет социометрических индексов.







Дата добавления: 2015-08-31; просмотров: 333. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия