Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

НЕПРЕРЫВНОСТЬ ОБРАТНОЙ ФУНКЦИИ





Определение 1. Пусть f – соответствие между множествами X и Y. Множество всех пар {(y,x)| (x,yf } называется соотвтетствием обратным для соответствия f и обозначается f –1.

Определение 2. Если соответствия f и f –1 являются функциями, то функция f называется обратимойf –1 обратной для функции f.

Функции f и f –1 являются взаимно обратными, т.к. (f –1)–1= f, а отображение

f: Х Y является взаимно однозначным.

Свойства взаимно обратных функций:

1. D (f -1) = E (f), E (f -1) = D (f).

2. f –1 (f (x)) = x " x ÎD(f); f (f –1 (y)) = y " y Î E (f).

3. Графики функций f и f –1 – симметричны относительно прямой y = x.

Примем без док-ва следующую теорему

Теорема 1. Если функция f является взаимно однозначным отображением области определения D (f) на область значений E (f), то обратое ей соответствие f –1 – функция.

Теорема 2 (о существовании и непрерывности обратной функции). Пусть функция f строго возрастает (убывает) и непрерывная на области определения D(f), являющейся промежутком. Тогда обратное соответствие f –1 является функцией возрастающей (убывающей) и непрерывной в своей области определения D(f –1 ) = E(f), которая также является промежутком.

Заметим, что согласно следствию из ІІ теоремы Больцано-Коши область значений непрерывной на промежутке функции E(f) = D(f –1) – промежуток.

Доказательство проведём для возрастающей функции в 3 этапа.

1 этап. Пусть f – возрастающая, докажем, что f –1 – функция, т.е. покажем, что каждому

y Î D (f –1) = E (f) соответствует единственное значение х Î E (f –1) = D(f).

Допустим противное, что некоторому уо Î E (f) соответствуют два х1, х2 Î D (f) такие, что f(x1) = yo і f(x2) = yo, но х1х2. Пусть для определённости х1 < х2. Из условия возрастания функции f следует, что f(x1) < f(x2) Û yo < yo, а это невозможно.

2 этап. Докажем, что f –1 – возрастающая функция в области определения D (f –1) = E (f). В множестве E (f) возьмем любые у1 и у2 такие, что у1 < у2 и покажем, что f –1 (у1)< f –1 (у2).

Допустим противное: f –1 1) ³ f –1 2). Всилу возрастания функции f будем меть

f(f –1 (y1)) ³ f(f –1 2)) Þ у1 ³ у2, что противоречит условию у1 < у2. Это и доказывает возрастание функции f –1.

3 этап. Дакажам, што функция f –1 непрерывная на E (f).

Мы доказали, что f –1 – возрастающая на промежутке E (f) функция, множество её значений E (f -1) = D (f) по условию теоремы – промежуток. Тогда по Т.2 §4 f –1 –непрерывная функция на E(f). ◄

Пример 1. Найти функцию обратную для функции функция f (х) = 2 x - 4.

Решение. Функция f (х) = 2 x - 4 – непрерывная и возрастающая на D (f) = R. По Т. 2 существует обратная функция, которая также является непрерывной и возрастающей на Е (f) = R. Найдём формулу для функции f –1 (у), для этого выразим х = у /2 + 2, или

y = x /2 + 2 (х и у поменяли местами).

Пример 2. Найти функцию обратную для функции

(1)

и построить её график.

Решение. D (f) = R – промежуток. Перепишем функцию (1) в виде Þ Þ ey - e–y = 2 x Þ ey - 1/ ey = 2 x Þ e2y - 2 xey - 1 = 0 ½обозначим ey = t > 0½Þ

Þ t 2 – 2 xt – 1 = 0 Þ ( не подходит). Т. обр., Þ – функция обратная для функции (1); D (f –1)= R.

Построим графики функций f и f –1

 

Рис.1 Рис.2







Дата добавления: 2015-08-31; просмотров: 431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия