Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

НЕПРЕРЫВНОСТЬ ОБРАТНОЙ ФУНКЦИИ





Определение 1. Пусть f – соответствие между множествами X и Y. Множество всех пар {(y,x)| (x,yf } называется соотвтетствием обратным для соответствия f и обозначается f –1.

Определение 2. Если соответствия f и f –1 являются функциями, то функция f называется обратимойf –1 обратной для функции f.

Функции f и f –1 являются взаимно обратными, т.к. (f –1)–1= f, а отображение

f: Х Y является взаимно однозначным.

Свойства взаимно обратных функций:

1. D (f -1) = E (f), E (f -1) = D (f).

2. f –1 (f (x)) = x " x ÎD(f); f (f –1 (y)) = y " y Î E (f).

3. Графики функций f и f –1 – симметричны относительно прямой y = x.

Примем без док-ва следующую теорему

Теорема 1. Если функция f является взаимно однозначным отображением области определения D (f) на область значений E (f), то обратое ей соответствие f –1 – функция.

Теорема 2 (о существовании и непрерывности обратной функции). Пусть функция f строго возрастает (убывает) и непрерывная на области определения D(f), являющейся промежутком. Тогда обратное соответствие f –1 является функцией возрастающей (убывающей) и непрерывной в своей области определения D(f –1 ) = E(f), которая также является промежутком.

Заметим, что согласно следствию из ІІ теоремы Больцано-Коши область значений непрерывной на промежутке функции E(f) = D(f –1) – промежуток.

Доказательство проведём для возрастающей функции в 3 этапа.

1 этап. Пусть f – возрастающая, докажем, что f –1 – функция, т.е. покажем, что каждому

y Î D (f –1) = E (f) соответствует единственное значение х Î E (f –1) = D(f).

Допустим противное, что некоторому уо Î E (f) соответствуют два х1, х2 Î D (f) такие, что f(x1) = yo і f(x2) = yo, но х1х2. Пусть для определённости х1 < х2. Из условия возрастания функции f следует, что f(x1) < f(x2) Û yo < yo, а это невозможно.

2 этап. Докажем, что f –1 – возрастающая функция в области определения D (f –1) = E (f). В множестве E (f) возьмем любые у1 и у2 такие, что у1 < у2 и покажем, что f –1 (у1)< f –1 (у2).

Допустим противное: f –1 1) ³ f –1 2). Всилу возрастания функции f будем меть

f(f –1 (y1)) ³ f(f –1 2)) Þ у1 ³ у2, что противоречит условию у1 < у2. Это и доказывает возрастание функции f –1.

3 этап. Дакажам, што функция f –1 непрерывная на E (f).

Мы доказали, что f –1 – возрастающая на промежутке E (f) функция, множество её значений E (f -1) = D (f) по условию теоремы – промежуток. Тогда по Т.2 §4 f –1 –непрерывная функция на E(f). ◄

Пример 1. Найти функцию обратную для функции функция f (х) = 2 x - 4.

Решение. Функция f (х) = 2 x - 4 – непрерывная и возрастающая на D (f) = R. По Т. 2 существует обратная функция, которая также является непрерывной и возрастающей на Е (f) = R. Найдём формулу для функции f –1 (у), для этого выразим х = у /2 + 2, или

y = x /2 + 2 (х и у поменяли местами).

Пример 2. Найти функцию обратную для функции

(1)

и построить её график.

Решение. D (f) = R – промежуток. Перепишем функцию (1) в виде Þ Þ ey - e–y = 2 x Þ ey - 1/ ey = 2 x Þ e2y - 2 xey - 1 = 0 ½обозначим ey = t > 0½Þ

Þ t 2 – 2 xt – 1 = 0 Þ ( не подходит). Т. обр., Þ – функция обратная для функции (1); D (f –1)= R.

Построим графики функций f и f –1

 

Рис.1 Рис.2







Дата добавления: 2015-08-31; просмотров: 431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия