Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УСЛОВИЯ НЕПРЕРЫВНОСТИ МОНОТОННОЙ ФУНКЦИИ





УСЛОВИЯ НЕПРЕРЫВНОСТИ МОНОТОННОЙ ФУНКЦИИ

Теорема 1 (об односторонних пределах монотонной функции). Если функция f(x) монотонна и определена в некоторой окрествности U(x0,δ) точки x0, то

1о. , при f(x) — неубывающей;

2о. , при f(x) — невозрастающей.

Доказательство проведём для неубывающей функции. Т. к. f(x) — неубывающая (по условию Т.) в U(x0,δ), то выполняется неравенство f(x)≤ f(x0) Þмножество М= { x| x≤ x0, } ограничено сверху числом f (x0). По Т. о существ-нии верхней грани $ a* = sup M. По определению верхней грани " х Î U(x0,δ) и x≤ x0 Þ

a* ≤ f(x0) (1)

По свойству верхней грани "ε>0 $ x 1Î U(x0,δ) и x 1< x0, такой, что a*ε< f(x 1 ) ≤ a* <a* + ε. Т.к. f(x) — неубывающая(по условию), то последнее неравенство выполняется " x, удовлетворяющих неравенству x 0 > x > x 1. Т.обр., показали, что "ε>0 $ δ1= x 1x0 >0 | " x Î U(x01) Ç D (f) (а значит –δ1< xx0 <0, что выполняется неравенство

a*ε< f(x) <a* + ε Þ | f(x) – a* | < ε, а значит

(2)

(с учетом неравенства (1)). Аналагично даказывается, что

, (3)

где а* = sup{ x| x≥ x0, }. Объединяя (2) и (3), получаем утверждение теоремы.

Доказать самостоятельно для невозрастающей функции.◄

Следствие из Т.1. Если монотонная функция f (х) имеет разрыв в точке x0, то x0 — точка разрыва перого рода.

Теорема 2 (неабходимое и дастаточное условие непрерывности монотонной функции). Для того, чтобы монотонная функция f(x), определенная на промежутке ХÌD(f) была непрерывной, неабходимо и дастаточно, чтобы множество её значений на этом промежутке множество Y={f(x)| xÎX} также являлось промежутком.

Необходимость. Дано: f(x) –монотонная, непрерывная функцияна промежутке Х.

Доказать: Y – промежуток.

Доказательство проведём для неубывающей функции. Обозначим через m =inf Y, M =sup Y. Ранее мы договорились считать m = – ¥, если Y – неограниченное снизу множество и M = + ¥, если Y – неограниченное сверху множество. Возьмём любое число l, удовлетворяющего неравенству m < l < M. По 2 свойству верхней (нижней) грани

$ x 1, x 2Î Х, (причём x 1 < x2 т.к. по условию f(x) –неубывающая), такие, что

mf(x 1 ) <l< f(x 2 ) ≤ M.

По условию теоремы f(x) – непрерывная функцияна промежутке Х, а значит и на отрезке [ x 1, x 2X Þ по теореме §, что $ с Î[ x 1, x 2X, такая что f (c)= l. Т. обр. показали, что для любого числа l, удовлетворяющего неравенству m < l < M $ сÎX, в которой f (c)= l Þ Y – промежуток. ◄

Дастаточность. Дано: f(x) –монотонная функцияна промежутке Х.

Y={f(x)| xÎX} — промежуток.

Доказать: f(x) —непрерывная функцияна промежутке Х.

Доказательство проведём для неубывающей функции методом от противного. Пусть функция f(x) имеет разрыв в точке x0 Î Х. На основании следствия из Т.1Þ x0 – точка разрыва первого рода, т. е., что . Пусть для определённости , тогда по Т.1 . Рассмотрим число γ, такое, что . Тогда " x < x0, x ÎX выполняется неравенство

(4)

а " x > x0, x ÎX

(5)

Объединим (4) и (5), получим что " x ÎX f(x)≠γ, но γÎ Y Þ Y не является промежутком (противоречие).

Доказать самостоятельно для невозрастающей функции.◄







Дата добавления: 2015-08-31; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия