Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УСЛОВИЯ НЕПРЕРЫВНОСТИ МОНОТОННОЙ ФУНКЦИИ





УСЛОВИЯ НЕПРЕРЫВНОСТИ МОНОТОННОЙ ФУНКЦИИ

Теорема 1 (об односторонних пределах монотонной функции). Если функция f(x) монотонна и определена в некоторой окрествности U(x0,δ) точки x0, то

1о. , при f(x) — неубывающей;

2о. , при f(x) — невозрастающей.

Доказательство проведём для неубывающей функции. Т. к. f(x) — неубывающая (по условию Т.) в U(x0,δ), то выполняется неравенство f(x)≤ f(x0) Þмножество М= { x| x≤ x0, } ограничено сверху числом f (x0). По Т. о существ-нии верхней грани $ a* = sup M. По определению верхней грани " х Î U(x0,δ) и x≤ x0 Þ

a* ≤ f(x0) (1)

По свойству верхней грани "ε>0 $ x 1Î U(x0,δ) и x 1< x0, такой, что a*ε< f(x 1 ) ≤ a* <a* + ε. Т.к. f(x) — неубывающая(по условию), то последнее неравенство выполняется " x, удовлетворяющих неравенству x 0 > x > x 1. Т.обр., показали, что "ε>0 $ δ1= x 1x0 >0 | " x Î U(x01) Ç D (f) (а значит –δ1< xx0 <0, что выполняется неравенство

a*ε< f(x) <a* + ε Þ | f(x) – a* | < ε, а значит

(2)

(с учетом неравенства (1)). Аналагично даказывается, что

, (3)

где а* = sup{ x| x≥ x0, }. Объединяя (2) и (3), получаем утверждение теоремы.

Доказать самостоятельно для невозрастающей функции.◄

Следствие из Т.1. Если монотонная функция f (х) имеет разрыв в точке x0, то x0 — точка разрыва перого рода.

Теорема 2 (неабходимое и дастаточное условие непрерывности монотонной функции). Для того, чтобы монотонная функция f(x), определенная на промежутке ХÌD(f) была непрерывной, неабходимо и дастаточно, чтобы множество её значений на этом промежутке множество Y={f(x)| xÎX} также являлось промежутком.

Необходимость. Дано: f(x) –монотонная, непрерывная функцияна промежутке Х.

Доказать: Y – промежуток.

Доказательство проведём для неубывающей функции. Обозначим через m =inf Y, M =sup Y. Ранее мы договорились считать m = – ¥, если Y – неограниченное снизу множество и M = + ¥, если Y – неограниченное сверху множество. Возьмём любое число l, удовлетворяющего неравенству m < l < M. По 2 свойству верхней (нижней) грани

$ x 1, x 2Î Х, (причём x 1 < x2 т.к. по условию f(x) –неубывающая), такие, что

mf(x 1 ) <l< f(x 2 ) ≤ M.

По условию теоремы f(x) – непрерывная функцияна промежутке Х, а значит и на отрезке [ x 1, x 2X Þ по теореме §, что $ с Î[ x 1, x 2X, такая что f (c)= l. Т. обр. показали, что для любого числа l, удовлетворяющего неравенству m < l < M $ сÎX, в которой f (c)= l Þ Y – промежуток. ◄

Дастаточность. Дано: f(x) –монотонная функцияна промежутке Х.

Y={f(x)| xÎX} — промежуток.

Доказать: f(x) —непрерывная функцияна промежутке Х.

Доказательство проведём для неубывающей функции методом от противного. Пусть функция f(x) имеет разрыв в точке x0 Î Х. На основании следствия из Т.1Þ x0 – точка разрыва первого рода, т. е., что . Пусть для определённости , тогда по Т.1 . Рассмотрим число γ, такое, что . Тогда " x < x0, x ÎX выполняется неравенство

(4)

а " x > x0, x ÎX

(5)

Объединим (4) и (5), получим что " x ÎX f(x)≠γ, но γÎ Y Þ Y не является промежутком (противоречие).

Доказать самостоятельно для невозрастающей функции.◄







Дата добавления: 2015-08-31; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия