Анизотропия свойств
Свойства холоднодеформированного металла по разным направлениям различны. Анизотропия свойств обусловлена двумя причинами: волокнистостью структуры и текстурой деформации. По длине разрывного образца, вырезанного поперек волокна, число межзеренных границ значительно больше, чем в образце, вырезанном вдоль волокна. На межзеренных границах сосредоточены примеси и неметаллические включения, например окисные плены. Естественно, что механические свойства металла вдоль и поперек волокна разные. Поэтому при контроле полуфабрикатов, полученных обработкой давлением, различают «продольные» и «поперечные» образцы и, соответственно, «продольные» и «поперечные» свойства. Обычно показатели пластичности и ударная вязкость на поперечных образцах ниже, чем на продольных. Каждый кристаллит анизотропен, его свойства зависят от кристаллографического направления. В металле с хаотичной ориентировкой кристаллов свойства по всем направлениям статистически усредняются. Такой металл квазиизотропен. В текстурованном металле с предпочтительной ориентировкой кристаллов имеются направления, вдоль которых одни свойства усилены, другие ослаблены. Поэтому текстура деформации обусловливает анизотропию свойств. Холодная обработка давлением приводит металл в неравновесное состояние с повышенной свободной энергией. Наклепанный металл стремится самопроизвольно перейти в более равновесное состояние с меньшей свободной энергией. К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки и другие внутризеренные процессы и рост зерен. Первое требует высокой температуры, так как при этом происходит незначительное перемещение атомов. Уже небольшой нагрев (для железа 300—400°С) снимает искажения решетки (как результат многочисленных субмикропроцессов— уменьшение плотности дислокаций в результате их взаимного уничтожения, так называемая аннигиляция, слияния блоков, уменьшение внутренних напряжений, уменьшение количества вакансий и т. д.). Снятие искажений решетки в процессе нагрева деформированного металла называется возвратом, или отдыхом. В результате этого процесса твердость и прочность несколько понижаются (на 20— 30% по сравнению с исходными), а пластичность возрастает. Наряду с этим, т. е. с отдыхом (возвратом), может происходить еще так называемый процесс полигонизации, заключающийся в том, что беспорядочно расположенные внутри зерна дислокации собираются, образуя сетку и создавая ячеистую структуру, которая может быть устойчивой и может затруднить процессы, развивающиеся при более высокой температуре. Рекристаллизация, т. е. образование новых зерен, протекает при более высоких температурах, чем возврат и полигонизация, может начаться с заметной скоростью после нагрева выше определенной температуры. Сопоставление температур рекристаллизации различных металлов показывает, что между минимальной температурой рекристаллизации и температурой плавления существует простая зависимость Трек = а Тпл (Трек — абсолютная температура рекристаллизации; Tпл — абсолютная температура плавления; а — коэффициент, зависящий от чистоты металла). Чем выше чистота металла, тем ниже температура рекристаллизации. У металлов обычной технической чистоты а = 0,3~0,4. Температура рекристаллизации сплавов, как правило, выше температуры рекристаллизации чистых металлов и в некоторых случаях достигает 0,8 Тпл. Наоборот, очень чистые металлы имеют очень низкую температуру рекристаллизации: 0,2 Тпл и даже 0,1 Тпл. После того как рекристаллизация (I стадия) завершена, строение металла и его свойства становятся прежними, т. е. такими, которые он имел до деформации. Пользуясь коэффициентом а, легко подсчитать температуру рекристаллизации металлов обычной чистоты: для железа она будет около 450°С, для меди - около 270°С, для алюминия - около 5°С. Для таких легкоплавких металлов, как цинк, олово, свинец, температура рекристаллизации ниже комнатной. Кроме чистоты металла, минимальная температура рекристаллизации зависит также и от степени предшествующей деформации. Чем больше степень деформации, чем более искажена структура, тем менее она устойчива и тем больше ее стремление принять более устойчивое состояние. Следовательно, большая степень деформации облегчает процесс рекристаллизации и снижает минимальную температуру рекристаллизации. Температура рекристаллизации имеет важное практическое значение. Чтобы восстановить структуру и свойства наклепанного металла (например, при необходимости продолжить обработку давлением путем прокатки, протяжки, волочения и т. п.), его надо нагреть выше температуры рекристаллизации. Такая обработка называется рекристаллизационным отжигом. Пластическое деформирование выше температуры рекристаллизации, хотя и приводит к упрочнению, но это упрочнение устраняется протекающим при этих температурах процессом рекристаллизации. Следует отметить, что рекристаллизация протекает не во время деформации, а сразу после ее окончания и тем быстрее, чем выше температура. При очень высокой температуре, значительно превышающей температуру рекристаллизации, она завершается в секунды и даже доли секунд. Следовательно, при пластическом деформировании выше температуры рекристаллизации упрочнение и наклеп металла, если и произойдут, то будут немедленно сниматься. Такая обработка, при которой нет упрочнения (наклепа), называется горячей обработкой давлением. Обработка давлением (пластическая деформация) ниже температуры рекристаллизации вызывает наклеп и называется холодной обработкой. Пластическая деформация приводит металл в структурно неустойчивое состояние. Самопроизвольно должны происходить явления, возвращающие металл в более устойчивое структурное состояние. Таким образом, пластическое деформирование железа при 6000С следует рассматривать как горячую обработку, а при 400°С — как холодную. Для свинца и олова пластическое деформирование даже при комнатной температуре является по существу горячей обработкой, так как температура 20°С выше температуры рекристаллизации этих металлов. Эти металлы в практике называют ненаклепываемыми, хотя при деформировании у них образуются линии сдвига, что показывает, например, характерный хруст оловянной пластинки при ее изгибании). При горячей обработке металла, чтобы увеличить его пластичность, атакже устранить возможность наклепа, применяют температуры, значительно превосходящие минимальную температуру рекристаллизации. Для отжига наклепанного материала в производственных условиях применяют более высокие температуры, чем минимальная температура рекристаллизации. В соответствии с описанными выше процессами изменения строения наклепанного металла при его нагреве следует ожидать и соответствующего изменения свойств. По мере повышения температуры твердость сначала слегка снижается вследствие явлений возврата. После отжига при температуре, несколько превышающей температуру рекристаллизации, твердость резко падает и достигает исходного значения (значения твердости до наклепа). Эта температура и есть минимальная температура рекристаллизации, или порог рекристаллизации ). Аналогично изменению твердости изменяются и другие показатели прочности (предел прочности, предел текучести). Процесс рекристаллизации можно разделить на два этапа: 1) первичная рекристаллизация, или рекристаллизация обработки, когда вытянутые вследствие пластической деформации зерна превращаются в мелкие округлой формы беспорядочно ориентированные зерна; 2) вторичная, или собирательная рекристаллизация, заключающаяся в росте зерен и протекающая при более высокой температуре. Процессы первичной и вторичной рекристаллизации имеют ряд особенностей. Первичная рекристаллизация заключается в образовании новых зерен. Это обычно мелкие, можно даже сказать очень мелкие зерна, возникающие на поверхностях раздела крупных деформированных зерен. Хотя в процессе нагрева и происходят внутризеренные процессы устранения дефектов (возврат, отдых), все же они, как правило, полностью не заканчиваются, с другой, стороны, вновь образовавшееся зерно уже свободно от дефектов. К концу первой стадии рекристаллизации можно получить структуру, состоящую только из таких зерен, т. е. очень мелких зерен, в поперечнике имеющих размер внесколько микрон. Но в этот момент наступает процесс вторичной рекристаллизации, заключающейся в росте зерен. Рост кристаллов — процесс самопроизвольный, определяемый стремлением системы к уменьшению запаса внутренней энергии. Укрупнение зерна, т. е. получение из нескольких мелких зерен меньшего числа крупных, приводит к уменьшению суммарной поверхности зерна («внутренней поверхности») и, следовательно, к уменьшению запаса свободной энергии в системе. Важно знать, по какому механизму растет зерно, так как от размера зерна зависят многие свойства, а, зная механизм роста зерна, можно регулировать его размеры термической обработкой. Возможны три существенно различных механизма роста зерна: 1) зародышевый — состоящий в том, что после первичной рекристаллизации вновь возникают зародышевые центры новых кристаллов, и их рост приводит к образованию новых зерен, но их меньше, чем зерен в исходном состоянии, и поэтому после завершения процесса зерна в среднем станут крупнее; 2) миграционный — состоящий в перемещении границы зерна и в увеличении его размеров. Так как крупное зерно термодинамически устойчивее мелкого (отношение S/V у него меньше, где S — поверхность, а V —объем), то растут крупные зерна за счет «поедания» мелких зерен; 3) слияние зерен — состоящее в постепенном «растворении» границ зерен и объединении многих мелких зерен в одно крупное. Первый «зародышевый» процесс, по-видимому, реализуется весьма редко (образование новых зерен из рекристаллизованных энергетически маловероятно). Миграция границ зерен является диффузионным процессом, скорость его определяется скоростью самодиффузии, и поэтому этот процесс имеет преимущественное значение при высокой температуре, значительно выше температуры рекристаллизации. Слияние зерен не требует для своего осуществления значительных диффузионных процессов, и, главное, процесс слияния может происходить одновременно по всем (или многим) поверхностям межзеренного раздела. Межзеренные границы являются сосредоточением различных дефектов, дислокаций, в первую очередь. Аннигиляция этих дефектов есть уничтожение границ зерен. Следовательно, процесс роста зерен путем слияния происходит при более низкой температуре, чем рост зерен путем миграции и приводит к образованию очень крупных зерен. Для незавершенного процесса слияния характерно наличие структуры, состоящей из небольшого числа крупных зерен и большого числа мелких. Такая разнозернистая структура не обладает стабильными и высокими свойствами. Из сказанного следует заключить, что процесс слияния вредно отражается на структуре и, следовательно, и свойствах, так как может привести к крупнозернистой (при завершении про цесса) или к разнозернистости (при не завершении процесса), и тогда следует принять меры, предупреждающие это. Какой из перечисленных двух основных механизмов роста зерна реализуется, зависит от температуры: при более низкой температуре рост зерна происходит за счет слияния, при более высокой — за счет миграции границ, а также и от исходного структурного состояния, в частности от степени, предшествующей пластической деформации. При малой степени деформации насыщенность дефектами незначительна и поэтому образование новых, свободных от дефектов, рекристаллизованных зерен не дает значительного эффекта в смысле выигрыша в свободной энергии. Поэтому при малой степени деформации и первичная рекристаллизация осуществляется с трудом (при высокой температуре), и роста зерна при вторичной рекристаллизации почти не происходит. При некоторой сравнительно небольшой степени пластической деформации создается сравнительно небольшая плотность дислокаций в основном по границам зерен, обеспечивающая преимущественное развитие процесса роста зерна по механизму слияния, что при завершенности процесса приводит к очень сильному росту зерна. Степень деформации, обусловливающая преимущественное развитие процесса слияния и приводящая после нагрева к гигантскому росту зерна, называется критической степенью деформации. Она невелика и находится в пределах 3—8% (обычно). Если после деформации осуществляется рекристаллизацнонный нагрев, то критической степени деформации следует избегать. При сверхкритической деформации плотность дефектов такова, что механизм слияния затруднен или неосуществим. Рост зерна происходит в результате миграции границ, что при прочих равных условиях дает более мелкое зерно, чем то, какое получается при процессе слияния.
|