Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение развертки призмы методом нормального сечения




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

На примере, рассмотренном в приложении 1, для построения
развертки призмы использован метод нормального сечения. Он заключается в следующем:

1. Пересекаем боковые грани призмы плоскостью, перпендикулярной к ребрам.

2. Строим проекции сечения и находим натуральную величину фигуры сечения.

3. На прямой откладываем отрезки, равные сторонам фигуры сечения.

4. Через полученные точки проводим прямые, перпендикулярные этой прямой, и откладываем на них отрезки, равные натураль­ной величине боковых ребер призмы. Полученные точки соединяем отрезками прямых.

В рассмотренном нами случае секущая плоскость α, заданная на чертеже пересечением горизонтали и фронтали, перпендикулярна боковым ребрам призмы α┴[AA']; [BB']; [CC']. Следовательно, полученное сечение – треугольник 123 – является нормальным (от слова «нормаль» - перпендикуляр) сечением призмы.

Преобразованная проекция есть натуральная величина этого нормального сечения.

На прямой откладываем отрезки [12], [23], [31], равные сторонам фигуры сечения ; ; .

Через точки 1,2,3 проводим перпендикуляры и откладываем по разные стороны от прямой 1-1 отрезки, равные натуральной величи­не ребер призмы. Размеры ребер берем с проекции на плоскости π4, где они проецируется без искажения:

[A1] = [A4 14]; [B2] = [B4 24]; [C3] = [C4 34].

К полученной развертке боковой поверхности усеченной приз­мы достраиваем нижнее основание – треугольник АBС и натуральную величину сечения – треугольник 123.

Полученная плоская фигура есть полная развертка усеченной части призмы.







Дата добавления: 2015-08-17; просмотров: 951. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.018 сек.) русская версия | украинская версия








Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7