Студопедия — Диффузионная модель обрыва цепи. Гель-эффект
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Диффузионная модель обрыва цепи. Гель-эффект






 

Реакция обрыва является единственной элементарной реакцией, которая контролируется диффузией на всех стадиях процесса. Определяющее влияние диффузии на скорость бимолекулярного обрыва радикалов роста при полимеризации в массе при больших конверсиях было установлено давно, практически ко времени завершения теории радикальной полимеризации в конце 40-х годов. Согласно уравнениям (5.9) и (5.16), с увеличением степени превращения мономера (конверсии), т.е. с его исчерпанием, скорость и степень полимеризации должны уменьшаться. Однако, уже к концу 40-х гг. XX в. было обнаружено, что при полимеризации метилметакрилата увеличение степени превращения мономера приводит не к уменьшению, а к увеличению скорости и степени полимеризации. Это явление было названо гель-эффектом,поскольку оно наблюдалось при достаточно больших степенях превращения, когда вязкость реакционной среды заметно возрастала (примерно на два порядка по сравнению с первоначальной). Было обнаружено, что гель-эффект характерен для полимеризации в массе или концентрированных растворах таких мономеров, как метилметакрилат, бутилметакрилат, винилацетат и некоторых других. На рис. 5.6 приведены данные, характеризующие влияние растворителя на гель-эффект при полимеризации метилметакрилата. В табл. 5.7 отражено влияние степени превращения мономера в полимер на кинетические константы при полимеризации метилметакрилата.

 

 

Таблица 5.7 Влияние степени превращения мономера q на полимеризацию метилметакрилата, 22,5 °С

 

q, % V, %/час / *·102 л0,5/(моль·с)0,5 , л/(моль·с) ·10-5, л/(моль·с) , с
0-1 3,5 5,78     0,89
  6,0 8,81   72,6 2,21
  23,4 38,9   8,93 6,3
    33,2   0,498 26,7
  2,8 3,59   0,0076  

* Рассчитано по данным и .

 

Отношение / , согласно (5.9) и (5.16), пропорционально скорости и степени полимеризации. Исходя из этого, на основании данных табл. 5.7 можно сделать вывод о том, что в результате гель-эффекта скорость и степень полимеризации метилметакрилата возрастают примерно на порядок. Рост отношения / обусловлен, в первую очередь, значительным уменьшением - на несколько порядков - значения константы скорости реакции обрыва. Гель-эффект зависит от многих факторов и, в первую очередь, от природы мономера. В качестве примера на рис. 5.7 представлены зависимости приведенных скоростей полимеризации от конверсии при полимеризации метилметакрилата и стирола. Видно, что в последнем случае гель-эффект наступает на более поздней стадии. Благодаря этому обстоятельству считалось, что гель-эффект при полимеризации этого мономера отсутствует.

В 60-х г. XX в. представления о диффузионном контроле реакции обрыва цепи были распространены на начальную стадию полимеризации, т.е. область малых конверсии. Согласно механизму, предложенному Нортом, реакция обрыва протекает через три последовательные стадии, схематически изображенные на рис. 5.8:

сближения макрорадикалов в результате так называемой «трансляционной» диффузии макрорадикальных клубков;

сближения активных концов макрорадикалов в результате взаимной диффузии сегментов двух перекрывающихся макрорадикальных клубков;

химической реакции между сблизившимися активными концами макрорадикалов.

На начальном этапе полимеризации при малых конверсиях мономера трансляционная подвижность макрорадикалов не ограничена, по крайней мере в такой степени, которая могла бы влиять на скорость реакции бимолекулярного обрыва. В этих условиях скорость реакции бимолекулярного обрыва лимитируется ее второй стадией, т.е. сегментальной микроброуновской диффузией.

 

 

Согласно закону Эйнштейна, коэффициент диффузии обратно пропорционален вязкости среды. При сегментальной диффузии необходимо учитывать вязкость растворителя, в котором движутся сегменты, т.е. вязкость мономера или вязкость смеси мономера и растворителя. С ее увеличением подвижность сегментов должна уменьшаться, а вместе с ней и скорость бимолекулярного обрыва. Такая зависимость подтверждается экспериментально, что и является доказательством диффузионного механизма обрыва цепи на начальной стадии радикальной полимеризации.

К настоящему времени механизм контроля реакции обрыва цепи установлен для всех стадий полимеризации в массе. На рис. 5.9 представлена типичная зависимость приведенной скорости полимеризации в массе от конверсии. На этой кривой выделяются четыре характерные области:

I. Область начальных конверсии с практически постоянной скоростью полимеризации, = const при 0 < q < q1;

II. Область автоускорения, > 0 при q1 < q < q2, где q1 - степень превращения, соответствующая началу автоускорения; q2 -перегибу кривой, указывающему на начало автоторможения;

III. Переходная область от автоускорения к автоторможению q2 < q < qmax;

IV. Область автоторможения qmax < q < 1.

В первой области, как уже упоминалось, скорость обрыва контролируется сегментальной подвижностью макрорадикалов. Накопление полимера приводит к перекрыванию макромолекулярных клубков и образованию сплошной сетки зацеплений макромолекул.

 

 

В результате «трансляционная» подвижность макрорадикалов резко ограничивается, она начинает контролировать скорость обрыва, что означает изменение механизма диффузионного контроля и начало гель-эффекта.

Степень превращения, при которой начинается гель-эффект, уменьшается с увеличением молекулярной массы полимера. Причина такой зависимости вполне понятна - с увеличением молекулярной массы увеличивается размер клубков и, следовательно, уменьшается концентрация полимера, необходимая для образования сплошной флуктуационной сетки зацеплений макромолекул. Было показано, что концентрация полимера φ2, отвечающая началу гель-эффекта, связана со степенью полимеризации соотношением:

 

 

где φ2 - объемная доля полимера, соответствующая степени превращения q, при которой начинается автоускорение, α и К - константы. При полимеризации метилметакрилата а = 0,53, К = 8,74, бутилметакрилатa - α = 0,25, К = 2,80.

Для второй области, т.е. области развития гель-эффекта, характерна зависимость константы скорости реакции обрыва от молекулярной массы макрорадикалов. Однако в переходной области (III) эта зависимость вырождается, что свидетельствует об изменении механизма реакции обрыва. При потере подвижности макрорадикалов вследствие чрезмерно возросшей вязкости на смену традиционному механизму приходит механизм обрыва «через рост». Суть этого механизма заключается в прорастании радикалов навстречу друг другу посредством химических актов реакции роста (рис. 5.10).

 

 

На четвертом, завершающем этапе полимеризации, диффузионно контролируемыми становятся также реакции с участием низкомолекулярных частиц, т.е. реакции роста и инициирования. При стекловании реакционной системы все реакции останавливаются, при этом свободные радикалы могут быть обнаруживаемы в системе в течение длительного времени (например, методом ЭПР). Для полного завершения полимеризации в массе, т.е. полного исчерпания мономера, следует поднять температуру до величины, превышающей температуру стеклования реакционной системы.

 







Дата добавления: 2015-08-17; просмотров: 1212. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия