Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Молекулярно-массовое распределение при радикальной полимеризации





 

Нахождение дифференциальной функции числового распределения при радикальной полимеризации сводится к нахождению вероятности образования макромолекул с заданной степенью полимеризации р. Рассмотрим вначале полимеризацию, в которой обрыв цепи осуществляется путем диспропорционирования радикалов. В этом случае число частиц в результате реакции обрыва не изменяется:

 

 

где Рm и Рm - макрорадикалы; Рm и Рn - макромолекулы со степенью полимеризации m и n.

Вероятность образования макромолекул со степенью полимеризации р может быть выражена следующим образом:

 

 

где ε - вероятность прекращения, а (1-ε) - вероятность продолжения роста цепи, А - коэффициент пропорциональности. Параметр ε описывается простым соотношением:

 

 

где Vo, Vp - скорости обрыва и роста цепи. Для дальнейшего важно ε << 1. При этом условии ( …, что при x<<1 дает e-x=1-x) уравнение (5.34) можно записать в виде:

 

 

Значение A определяется из условия нормировки. Поскольку

 

 

то А = 1. Переходя к непрерывному распределению, окончательно имеем:

 

 

Ранее в подразд. 1.3.1 было показано, что существует количественная связь между дифференциальными числовой и массовой функциями распределения. Используя (1.7), получаем для дифференциальной массовой функции распределения:

 

 

Функции (5.38) и (5.39) описывают ММР полимера, полученного в условиях радикальной полимеризации при обрыве путем диспропорционирования и передачи цепи, а также полимера, полученного путем ступенчатой полимеризации (поликонденсации). Распределение, описываемое уравнением (5.38), называется нормальным распределением, наиболее вероятным распределением, а также распределением Флори. При таком распределении параметр полидисперсности w/ n=2.

Обрыв через рекомбинацию радикалов. Вэтом случае из двух макрорадикалов образуется одна макромолекула:

 

 

Макромолекулы со степенью полимеризации р могут быть получены в результате соединения радикалов, имеющих степень полимеризации р' и (р – р'), где 1<р'<(р-1). Тогда:

 

 

Поскольку A'=1 (см. выше), а все значения р' равновероятны, то

 

 

Распределение, отвечающее уравнению (5.41), называется уравнением Шульца. Переходя, аналогично предыдущему, к массовой функции распределения, получаем:

 

 

Параметр полидисперсности в данном случае равен w/ n=1,5. На рис. 5.5 представлен вид графических зависимостей, отвечающих дифференциальному числовому распределению при обрыве путем диспропорционирования и рекомбинации радикалов.

 

 

Видно, что форма кривых принципиально отлична, особенно в области малых p.

 







Дата добавления: 2015-08-17; просмотров: 639. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия