Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Особенности практического применения регрессионных моделей





Одним из условий регрессионной модели является предположение о линейной независимости объясняющих переменных, т. е., решение задачи возможно лишь тогда, когда столбцы матрицы ис­ходных данных линейно независимы. Для экономических показате­лей это условие выполняется не всегда.

Под мультиколлинеарностью понимается высокая взаимнаякоррелированность объясняющих переменных, которая приводит к линейной зависимости нормальных уравнений.

Мультиколлинеарность может возникать в силу разных причин. На­пример, несколько независимых переменных могут иметь одинаковый вре­менной тренд, относительно которого они совершают малые колебания.

Существует несколько способов для определения наличия или отсутствия мультиколлинеарности.

Один из подходов заключается в анализе матрицы коэффициентов парной корреляции. Считают явление мультиколлинеарности в исходных данных установленным, если коэффициент парной корреляции между двумя переменными больше 0,8.

Другой подход состоит в исследовании матрицы Х'Х. Если определитель матрицы Х'Х близок к нулю, то это свидетельствует о наличии мультиколлинеарности.

Для устранения или уменьшения мультиколлинеарности ис­пользуется ряд методов.

Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух силь­но связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может мень­ше, затем возвращение к первоначальным факторам.

Самый простой из них (но не всегда самый эффективный) состоит в том, что из двух объясняющих пере­менных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую пе­ременную оставить, а какую удалить из анализа, решают в первую очередь на основании экономических соображений. Если с эконо­мической точки зрения ни одной из переменных нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной.

Более сложным приемом в таких случаях является переход от первоначальных факторов к их главным компонентам, число которых быть может мень­ше, затем возвращение к первоначальным факторам

Еще одним из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.

Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения – отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции, что позволяет последовательно отбирать факторы, оказывающие существенное влияние на результирующий признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов из содержательных соображений. При этом первым в уравнение включается фактор, наиболее тесно коррелирующий с Y, вторым в уравнение включается тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсию Y.

Вторая схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьшее значение t - статистики. После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если среди них опять окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна их этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6–7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.

Особым случаем мультиколлинеарности при использова­нии временных выборок является наличие в составе перемен­ных линейных или нелинейных трендов. В этом случае рекомендуется сначала выделить и исключить тренды, а затем определить параметры регрессии по остаткам.

Игнорирование наличия трендов в зависимой и независи­мой переменных ведет к завышению степени влияния неза­висимых переменных на результирующий признак, что полу­чило название ложной корреляции.

Наиболее часто в практических исследованиях возникает вопрос: сколько надо наблюдений для надежного определе­ния параметров регрессии?

Выбор числа наблюдений определяется требованиями к точности и надежности оценок параметров. Из требований к точности прогноза и вытекает требование на число наблюдений. Обозначим требуемый размер половины доверительного интервала через , где — оценка дисперсий случайной составляющей. Достижение этой желаемой точности определяется как объемом выборки, так и расположением прогностических значений факторов. Чем более разнесены последние от сред­них выборочных значений, тем меньше точность прогноза.

Большим препятствием к применению регрессии является ограниченность исходной информации, при этом наряду с указанными выше затрудняющими обстоятельства­ми (мультиколлинеарность, зависимость остатков, небольшой объем выборки и т. п.) ценность информации может сни­жаться за счет ее «засоренности», т. е. проявления новых обстоятельств, которые ранее не были учтены.

Резко отклоняющиеся наблюдения могут быть результа­том либо действия большого числа сравнительно малых случайных факторов, которые в редких случаях приводят к большим отклонениям, либо это действительно случайные один или несколько выбросов, которые можно исключить как аномальные. Однако при наличии не менее трех аномальных отклонений на несколько десятков наблюдений их приписывают наличию одного или нескольких неучтенных факторов, которые проявляются только в виде аномальных на­блюдений.


[1] Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо) ввел английский статистик Ф. Гальтон. Он исследовал влияние роста родителей и более отдаленных предков на рост детей. По его модели рост ребенка определяется наполовину родителями, на четверть – дедом с бабкой, на одну восьмую прадедом и прабабкой и т.д. Другими словами, такая модель характеризует движение назад по генеалогическому дереву. Ф. Гальтон назвал это явление регрессией как противоположное движению вперед – прогрессу. В настоящее время термин "регрессия" применяется в более широком плане – для описания статистической связи между случайными величинами.

 

 







Дата добавления: 2015-08-17; просмотров: 940. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия