Принцип работы. В зависимости от функционального назначения приборы подразделяются на следующие основные типы: а) ЭТС - эхотомоскопы (приборы
В зависимости от функционального назначения приборы подразделяются на следующие основные типы: а) ЭТС - эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза); б) ЭКС - эхокардиоскопы (приборы, предназначенные для исследования сердца); в) ЭЭС - эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга); г) ЭОС - эхоофтальмоскопы (приборы, предназначенные для исследования глаза). В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы: а) С - статические; б) Д - динамические; в) К – комбинированные.
Ультразвуковая дефектоскопия Ультразвукова́я дефектоскопи́я — поиск дефектов в материале изделия ультразвуковым методом, то есть путём излучения и принятия ультразвуковых колебаний, отраженных от внутренних несплошностей (дефектов), и дальнейшего анализа их амплитуды, времени прихода, формы и других характеристик с помощью специального оборудования — ультразвукового дефектоскопа. Является одним из самых распространенных методовнеразрушающего контроля. Принцип работы Звуковые волны не изменяют траектории движения в однородном материале. Отражение акустических волн происходит от раздела сред с различными удельными акустическими сопротивлениями. Чем больше различаются акустические сопротивления, тем большая часть звуковых волн отражается от границы раздела сред. Так как включения в металле часто содержат воздух, имеющий на несколько порядков меньшее удельное акустическое сопротивление, чем сам металл, то отражение будет практически полное. Разрешающая способность акустического исследования определяется длиной используемой звуковой волны. Это ограничение накладывается тем фактом, что при размере препятствия меньше четверти длины волны, волна от него практически не отражается. Это определяет использование высокочастотных колебаний — ультразвука. С другой стороны, при повышении частоты колебаний быстро растет их затухание, что ограничивает доступную глубину контроля. Для контроля металла наиболее часто используются частоты от 0.5 до 10 МГц.
|