Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Mechanisms of acquisition and loss of genetic information by bacterial genomes





G.B. Smirnov

The Gamaleya Research Institute of Epidemiology and Microbiology RAMS, 123098 Moscow, Russia

Summary

Acquisition and deletions of microbial genomes sequences appeared to be important events in genome evolution. The balance between these processes is not always kept. As a result expansion of one genomes and reduction of others occur. Until recently the parasitic or symbiotic style of living was thought to be the prerequisite of genome reduction. Now it is obvious that the reduction of genomes took place not only in the genomes of pathogens and endosymbionts but in free living nonpathogenic microorganisms as well.

Natural selection is a doubtful reason for compactization of microbial genomes since the bacteria of closely related species living under the same or very similar selective conditions do not liable to genome reduction. Instead the acquisition of genetic material occurs in some cases. Thus parasitic and endosymbiotic styles of living could not be considered as a sole reasons for genome reduction.

The concept is putting forward, according to which the acquisition of a novel DNA sequences depends upon the polynucleotide sequence of the target site in the recipient genome. It means that the subject of selection is not the phenotypic trait encoded by the donor DNA but rather the novel DNA sequence irrespective of its coding ability. This kind of selection is designated as polynucleotide (PN)-choice. PN-choice is ample for the acquisition of a novel DNA sequences. In contrast the loss of DNA-sequences requires both PN-choice and Darwinian phenotypic selection.

It is hypothesized that the genome reduction is a phase of bi-directional process — genome «pulsation», i.e. after genome compactization the acquisition of genetic material may occur, leading to the creation of the novel genetic compositions. The genome «pulsation» as an evolutionary mechanism may be feasible only for extensively multiplying genomes.

ЛИТЕРАТУРА

1 Берг Л.С. // Труды по теории эволюции. Л. Наука, 1977.

2 Берг Л.С. // Номогенез, или эволюция на основе закономерностей. Тр. географ. ин-та, Гос. изд.-во Петроград 1, 1922.

3 Любищев А.А. // Проблемы формы систематики и эволюции организмов. Москва. Наука, 1982.

4 Смирнов Г.Б. // ВНИИМИ, Медицина и здравоохранение, сер. Эпидемиология, вирусология и инфекционные заболевания, Выпуск 3. Москва, 1988, с.1.

5 Соболев Д.Н. // Начала исторической биогенетики. Киев. Гос.издат. Украины, 1924.

6 Филипченко Ю.А. // Эволюционная идея в биологии. Москва, Наука, 1977, с.205.

7 Achaz G., Rocha E. P. C., Netter P., and Coissac E.//Nucleic Acids Research, 2002, V. 30, P. 2987.

8 Akman L.A., Yamashita H., Watanabe K., Oshima T., Shiba M., and Aksoy S. // Nat. Genet. 2002, V. 32, P. 402.

9 Alsmark C.M., Frank A.C., Karlberg E.O., Legault B.A., Ardel D.H. Canback l, B., Eriksson A.S., Naslund A.K., Handley S.A., Huvet M., La Scola B., Holmberg M., and Andersson S.G. // Proc Natl Acad Sci U S A. 2004 V. 101(26), P. 9716.

10 Andersson J.O. and Andersson S. G. // Mol. Biol. Evol. 1999, V. 16, P.1178.

11 Andersson J.O. and Andersson S.G.E. // Mol. Biol. Evol. 2001, V.18, P. 829.

12 Andersson S.G.E. and Kurland C.G. // APMIS 1998, Suppl. 84, P.5.

13 Andersson, J.O. and Andersson, S.G. E. // Curr. Op. Gen. Dev.1999, V. 9, P. 664.

14 Andersson, J.O., Sarchfield S.W., and Roger A.J. // Molecular Biology and Evolution 2005, V. 22, №1, P. 85.

15 Aras R.A., Kang J., Tschumi A I., Harasaki Y., and Blaser M.J. // Proc Natl Acad Sci USA 2003, V. 100, P.13579.

16 Arber W. //Ann N Y Acad Sci. 1999, V. 18, № 870, P. 36.

17 Baldo L., Bordenstein S., Wernegreen J.J., and Werren J.H. // Molecular Biology and Evolution 2006, V. 23, №2, P. 437.

18 Barbour A.G. and Restrepo B.I. // Emerging Infectious Diseases 2000, V. 6, P. 5.

19 Barke A and Manning P.A. // Microbiology 1997, V. 143, P. 1805.

20 Bennetzen J., Ma J., and Devos K.M. // Annals of Botany 2005, V. 95, P.127.

21 Berg O.G. and Kurland C.G. // Molecular Biology and Evolution 2002, V. 19, P. 2265.

22 Bi X. and Liu L.F. // Prog. Nucleic Acid Res. Mol. Biol.1996, V. 54, P. 253.

23 Bitter W., Gerrits H., Kieft R., and Borst P. // Nature 1998, V. 391, P. 499.

24 Bozeman F.M., Masiello S.A., Williams M.S., Elisberg B.L. // Nature 1975, V. 255, P. 545.

25 Bringaud F., Biteau N., Zuiderwijk E., Berriman M., El-Sayed N.M., Ghedin E., Melville S.E., Hall N., and Baltz T. // Mol. Biol. Evol. 2004, V. 21, №3, P. 520.

26 Brinig M.M., Cummings C.A., Sanden G.N., Stefanelli P., Lawrence A., and Relman D.A. // J. Bacteriol. 2006, V. 188, P. 2375.

27 Brockmeier S.L., Register K.B., Magyar T., Lax A.J., Pullinger G.D., Kunkle R.A. // Infect Immun 2002, V. 70, P. 481.

28 Brubaker R.R. // J. Bacteriol. 1969, V. 98, P. 1404.

29 Caporale L.H. // Evolution of Efficient strategies for evolution: Chance Favors the Prepared Genome. Presented at NECSI's second International Conference on Complexity Studies Nashua, New Hampshire, 1998.

30 Caporale L.H. // Annual Review of Microbiology. 2003, V. 57, P. 467.

31 Chain P.S.G., Carniel E., Larimer F. W., Lamerdin J., Stoutland P. O., Regala W.M., Georgescu A.M., Vergez L. M., Land M. L., Motin V. L., Brubaker R. R., Fowler J., Hinnebusch J., Marceau M., Medigue C., Simonet M., Chenal-Francisque V., B. Souza, Dacheux D., Elliott J.M., Derbise A., Hauser L.J., and Garcia E. // Proc. Natl. Acad. Sci. USA 2004,V. 101, №38, P. 13826.

32 Chedin F., Dervyn E., Dervyn R., Ehrlich S.D., and Noirot P. // Mol. Microbiol. 1994, V. 12, P. 561.

33 Clark M.A., Baumann L., Thao M.L., Moran N.A., and Baumann P. // J. Bacteriol. 2001, V. 183, P. 1853.

34 Cole S.T., Eiglmeier K., Parkhill J., James K.D., Thomson N.R., Wheeler P.R., Honore N., Garnier T., Churcher C., Harris D., Mungall K., Basham D., Brown D., Chillingworth T., Connor R., Davies R.M., Devlin K., Duthoy S., Feltwell T., Fraser A., Hamlin N., Holroyd S., Hornsby T., Jagels K., Lacroix C., Maclean J., Moule S., Murphy L., Oliver K., Quail M.A., Rajandream M.A., Rutherford K.M., Rutter S., Seeger K., Simon S., Simmonds M., Skelton J., Squares R., Squares S., Stevens K., Taylor K., Whitehead S., Woodward J.R., Barrell B.G. // Nature 2001, V.409, P. 1007.

35 Dale C., Wang B., Moran N., and Ochman H. // Mol. Biol. Evol., 2003, V. 20, №8, P.1188.

36 Dawkins R. // The Selfish Gene. New York and Oxford: Oxford University Press.1976, P. 47.

37 DeShazer D. // J. Bacteriol. 2004, V. 186, №12, P. 3938.

38 Diavatopoulos D.A., Cummings C. A., Schouls L. M., Brinig M.M., Relman D.A., Mooi F. R. // PLOS Pathogens 2005, V.1, P. 4.

39 Dollo L. // Bull. Soc. Belg. Geol. 1893, P. 7.

40 Doolittle W.F. and Sapienza C. // Nature 1980, V. 284, P. 601.

41 Dufresne A., Garczarek L., and Partensky F. // Genome Biology 2005, V. 6, №2, R14.

42 Dufresne A., Salanoubat M., Partensky F., Artiguenave F., Axmann I.M.B.V., Duprat S., Galperin M.Y., Koonin E.V., Le Gall F. // Proc Natl Acad Sci USA 2003, V. 100, P.10020.

43 Fetherson J.D., Schuetze P., and Perry R.D. // Molec. Microbiol. 1992, V. 6, P. 2693.

44 Fuchslocher B., Millar L.L., and Cotter P.A. // Infect Immun. 2003, V. 71, №6, P. 3043.

45 Gil R., Sabater-Muñoz B., Latorre A., Silva F.J., and Moya A. // Proc Natl Acad Sci U S A. 2002, V. 99, №7, P. 4454.

46 Gil R., Sabater-Munoz B.,. Perez-Brocal V, Silva F.J., and Latorre A. // Gene 2006, V. 370, P. 17.

47 Goldshmidt R. // The material basis of evolution (Introd. St.J. Gould). Yale Univ. (1982). (Originally publ.: New Haven:Yale Univ. Press. 1940).

48 Gómez-Valero L., Latorre A., Silva F.J. // Mol. Biol. Evol.2004, V. 21, P. 2172.

49 Gregory T.R. // Gene 2004, V.324, P.15.

50 Hare J.M. and McDonough K.A. // J. Bacteriol. 1999, V. 181, № 16б, P. 4896.

51 Hess W.R. // Curr Opin Biotechnol 2004, V. 15, P. 191.

52 Itoh T., Martin W., and Nei M. // Proc. Natl. Acad. Sci. U S A. 2002 V. 99, P. 12944.

53 Julien B. // J Bacteriol. 2003, V. 185, №21, P. 6325.

54 Keeling P.J. and Fast N.M. // Annu. Rev. Microbiol. 2002, V. 56, P. 93.

55 Kim H S., Schell M.A., Yu Y., Ulrich R.L., Sarria S.H., Nierman W.C., and DeShazer D. // BMC Genomics 2005, V. 6, P. 174.

56 Knight C.A., Molinari N.A., and Petrov D.A. // Annals of Botany 2005, V.95 №1, P.177.

57 Komaki K., and Ishikawa H. // J. Mol. Evol. 1999, V. 48, P. 717.

58 Kroger M.and Hobom G. // Nature 1982, V. 297, P.159.

59 Lesic B. and Carniel E. // Journal of Bacteriology, 2005, V. 187, P. 3352.

60 Lips S., Revelard P., and Pays E. // Mol. Biochem. Parasitol. 1993, V. 62, P. 135.

61 Lovett S.T., Gluckman J., Simon P.J., Sutera V.J., and Drapkin P.T.// Mol. Gen. Genet. 1994, V. 245, P. 294.

62 Mahillon J. and Chandler M. // Microbiology and Molecular Biology Reviews 1998, V. 62, №3, P. 3725.

63 McGrath L.C. and Katz L.A. // Trends in Ecology & Evolution, 2004, V. 19, P. 32.

64 Melano R., Petroni A., Garutti A.,. Saka A.H., Mange L., Pasteran F., Rapoport M., RossiA., and Galas M. // Antimicrob. Agents Chemother. 2002, V. 46, P. 2162.

65 Mira A., Ochman H., and Moran N.A. // Trends in Genetics 2001, V. 17, P. 589.

66 Mira A., Klasson L., and Andersson S.G. // Curr Opin Microbiol. 2002, V. 5, № 5, P. 506.

67 Moran N.A. // Proc. Natl. Acad. Sci. USA 1996, V. 93, P. 2873.

68 Moran N.A. // Cell 2002, V. 108, P.583.

69 Moran N.A. and Mira A. // Genome Biology 2001, V. 2, P. 12.

70 Moran N.A. and Wernegreen J. J. // Trends in Ecology and Evolution 2000, V. 15, P. 321.

71 Nakabachi A., Yamashita A., Toh H., Ishikawa H., Dunbar H.E., Moran N.A., Hattori M. // Science 2006, V. 314, №5797, P. 267.

72 Natsuko K., Nikoh N., Ijichi N., Shimada M., and Fukatsu T. // Proc. Natl. Acad. Sci. U S A. 2002, V. 99, P. 14280.

73 Nierman W.C., DeShazer D., Kim H.S., Tettelin H., Nelson K.E., Feldblyum T., Ulrich R.L., Ronning C.M., Brinkac L.M., Daugherty S.C. // Proc Natl Acad Sci USA. 2004, V.101, P.14246.

74 Ogawa A. and Takeda T. // Microbiol. Immunol.1993, V. 37, P. 607.

75 Orgel L.E. and Crick F.H.C. // Nature 1980, V. 284, P. 604.

76 Parkhill J., Sebaihia M., Preston A., Murphy L.D., Thomson N., Harris D.E. // Nat. Genet. 2003, V. 35, P. 32.

77 Pays E., Tebabi P., Pays A., Coquelet H., Revelard P., and Salmon D. // Cell 1989, V. 57, P. 835.

78 Peeters B.P., de Boer J.H., Bron S., and Venema G. // Mol. Gen. Genet 1988, V. 212, P. 450.

79 Petrov D.A. // Theoretical Population Biology 2002, V. 61, P. 531.

80 Petrov D.A., Lozovskaya E.R., and Hartl D.L. // Nature 1996, V. 384, P. 346.

81 Plague G. R., Dale C., and Moran N.A. // Mol. Ecol. 2003, V. 12, P. 1095.

82 Reiter W.D., Palm P., and Yeats S. // Nucleic Acids Res. 1989, V. 17, №5, P. 1907.

83 Reuter M. and Keller L. // Mol. Biol. Evol. 2003, V. 20, №5, P. 748.

84 Rio R.V.M., LefevreC., Heddi A., and Aksoy S. // Appl. Envir. Microbiol., 2003, V. 69, №11, P. 6825.

85 Rocap G., Larimer F.W., Lamerdin J., Malfatti S., Chain P., Ahlgren N.A., Arellano A., Coleman M., Hauser L., Hess W.R. // Nature 2003, V. 424, P. 1042.

86 Rocha E.P.C. and Blanchard A. // Nucleic Acids Research. 2002, V. 30, P. 2031.

87 Romero D. and Palacios R. // Annu. Rev. Genet. 1997, V. 31, P. 91.

88 Rosas-Magallanes V., P. Deschavanne, L. Quintana-Murci, R. Brosch, B. Gicquel, and O. Neyrolles // Molecular Biology and Evolution 2006, V. 23, №6, P.1129.

89 Roth J.R., Benson N., Galitski T., Haack K., Lawrence J. G. // in Escherichia coli and Salmonella: Cellular and Molecular Biology, edited by R. C. H. Neinhardt, J. L. Ingraham, E. C. C. Lin, B. Low, B. Magasanik et al. ASM Press, Washington, DC. 1996, P. 2256.

90 Rowe-Magnus D.A., Guerout A.-M., and Mazel D. // Mol. Microbiol. 2002, V. 43, P. 1657.

91 Rowe-Magnus D.A., Guerout A.-M., Ploncard P., Dychinco B., Davies J., and Mazel D. // Proc. Natl. Acad. Sci. USA 2001, V. 98, P. 652.

92 Rowe-Magnus D.A., Guerout A-M., Biskri L., Bouige P., and Mazel D. // Genome Research 2003, V. 13, P. 428.

93 Rowe-Magnus D.A., Davies J., and Mazel D. // Curr. Top Microbiol. Immunol. 2002, V. 264, P.167.

94 Sabater-Muñoz B., Gómez-Valero L., van Ham R.C.H.J., Silva F.J., and Latorre A. // Applied and Environmental Microbiology, 2002, V. 68, P. 2572.

95 Sabater-Muñoz B., van Ham R. C. H. J., Moya A., Silva F.J., and Latorre A. // Journal of Bacteriology 2004, V. 186, P. 2646.

96 Schultz J.E. and Matin A. // J. Mol. Biol. 1991, V. 218, P. 129.

97 Silva F.J., Latorre A., and Moya A.S. // Trends Genet. 2001, V.11, P. 615.

98 Silwa P. and Korona R. // Proc Natl Acad Sci USA 2005, V. 102, P.17670.

99 Smith G.R. // Microbiol. Rev.1988, V. 52, P.1.

100 Tamas I., Klasson L., Canback B., Naslund A.K., Eriksson A.S., Wernegreen J.J., Sandstrom J.P., Moran N.A., Andersson S.G. // Science 2002, V. 296, №5577, P. 2376.

101 Tobes R. and Pareja E. // BMC Genomics 2006, V. 7, P. 62.

102 Turner C.M. // FEMS Microbiol Lett. 1997, V.153, №1, P. 227.

103 Vaisvila R., Morgan R.D., Posfai J., and Raleigh E.A. // Mol. Microbiol. 2001, V. 42, P. 587.

104 van Belkum A., Scherer S., van Alphen L., and Verbrugh H. // Microbiol Mol Biol Rev 1998, V. 62, № 2, P. 275.

105 van der Woude M.W. and Bäumler A. J. // Clinical Microbiology Reviews 2004, V. 17, P. 581.

106 van Dongen W.M.A.M., van Vlerken M.M.A, and De Graaf F.K. // Mol. Gen. (Life Sci. Adv.)1987, V. 6, P. 85.

107 van Ham R.C.H.J., Martínez-Torres D., Moya A., and Latorre A. // Applied and Environmental Microbiology, 1999, V. 65, P. 117.

108 van Ham R.C.H.J., González-Candelas F., Silva F.J., Sabater B., Moya A., and Latorre A. // Proc. Natl.Acad. Sci. U S A. 2000, V. 97, P. 10855.

109 Waters E.,M.J., Hohn I., Ahel D.E., Graham M.D., Adams M., Barnstead K.Y., Beeson L., Bibbs R., Bolanos M., Keller K., Kretz X.Y., Lin E., Mathur J.W., Ni M., Podar T., Richardson G.G., Sutton M., Simon D., Soll K.O., Stetter J. M., Short M.,

110 Weber M. // Biology and Philosophy 1996, V. 11, P. 67.

111 Wernegreen J.J., Degnan P.H., Lazarus A.B., Palacios C., and Bordenstein S. R. // Biol. Bull. 2003, V.204, P. 221.

112 Werren J.H. and Bartos J.D. // Curr. Biol. 2001, V. 11, №6, P. 431.

113 Werren J.H., Zhang W., and Guo L.R. // Proc. Biol. Sci. 1995, V. 261, № 1360, P. 55.

114 Wildschutte H., Wolfe D. M., Tamewitz A., and Lawrence J.G. // Proc. Natl. Acad. Sci. U S A. 2004, V. 101, №29, P.10644.

115 Williams K.P. // Nucleic Acids Res. 2002, V. 30, №4, P. 866.

116 Woolfit M. and Bromham L. // Mol. Biol. Evol. 2003, V. 20, №9, P. 1545.

117 Wren B.W. // Nature Genetics 2002, V. 32, P. 335.

118 Zhang J.R., Hardham J. M., Barbour A.G., and Norris S.J. // Сell 1997, V. 89, № 2, P. 275.

119 Zhao S. and Williams K. P. // J. Bacteriol. 2002, V. 184, №3, P. 859.

120 Zinser E.R. and Kolter R. // J. Bacteriol. 1999, V. 181, P. 5800.

121 Zinser E.R., Schneider D., Blot M., and Kolter R. // Genetics 2003, V. 164, P. 1271.

 







Дата добавления: 2015-08-17; просмотров: 380. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия