Студопедия — Общая характеристика механической колебательной системы.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая характеристика механической колебательной системы.






Технологическое оборудование для ультразвуковой сварки, независимо от физико-механических свойств свариваемых мате­риалов, которые являются непосредственными объектами интен­сивного воздействия ультразвуковых колебаний, имеет одну структуру и состоит из следующих узлов: источника питания, аппаратуры управления сварочным циклом, механической коле­бательной системы и привода давления.

Важнейшим узлом, составляющим основу и специфику обо­рудования и технологии ультразвуковой сварки металлов и пластмасс, является механическая колебательная система. Эта система служит для преобразования электрической энергии в ме­ханическую, передачи этой энергии в зону сварки, согласования сопротивления нагрузки с внутренним сопротивлением системы и геометрических размеров зоны ввода энергии с размерами излу­чателя, концентрирования энергии и получения необходимой величины колебательной скорости излучателя. Система должна работать с максимальным к. п. д. на резонансной частоте неза­висимо от изменения сопротивления нагрузки.

 

 

Типовая колебательная система (рис. 1) состоит из электро­механического преобразователя 1, волноводного звена — транс­форматора или иначе концентратора колебательной скорости 2, акустической развязки системы от корпуса машины 3, излуча­теля ультразвука — сварочного наконечника 4 и опоры 5, на кото­рой располагаются свариваемые детали 6.

Широко известны колебательные системы с использованием резонирующих стержней 7 (рис. 1, б), работающих в режиме изгибных колебаний.

Электромеханические преобразователи 1 изготовляются из магнитострикционных или электрострикционных материалов (ни­кель, пермендюр, титанат бария и др.). Под воздействием переменного электромагнитного поля в преобразователе возникают меха­нические напряжения, которые вызывают упругие деформации материала. Таким образом, преобразователь является источни­ком механических колебаний.

Волноводное звено 2 служит для передачи энергии к сварочному наконечнику. Это звено должно обеспечить необходимое увеличе­ние амплитуды колебаний сварочного наконечника по сравнению с амплитудой исходных волн преобразователя, трансформировать сопротивление нагрузки и сконцентрировать энергию.

Сварочный наконечник 4 является элементом, посредством которого осуществляется отбор мощности, поглощаемой в зоне сварки. По существу — это звено, определяющее площадь и объем непосредственного источника ультразвука. Так как в процессе сварки наконечник внедряется в


Рис. 1. Типовые колебательные системы: а— продольная; б— про­дольно-поперечная; в — продольная для сварки пластмасс.

 
 

свариваемую деталь, то он яв­ляется также и согласующим волноводным звеном между нагруз­кой и колебательной системой.

 


Технология ультразвуковой сварки.

Особенности технологии УЗС

При вводе механических колебаний в свариваемые металлы изделие начинает вибрировать с ультразвуковой частотой. Форма колебаний определяется геометрическими размерами изделия. В наиболее простом и распространенном случае — сварка листа прямоугольной формы — в последнем устанавливается стоячая волна с характерным чередованием узлов и пучностей плоской волны изгибных колебаний. Уровень напряжении, возникаю­щих в пучностях, определяется мощностью энергии, вводимой в зону сварки. При этом возникает опасность появления микро-и макротрещин в зоне сварки. Образование трещин при достаточ­ном уровне энергии свойственно металлам, обладающим малой пластичностью, имеющим местные дефекты, чрезмерный наклеп и т. п. Для снижения вредного эффекта вибрации свариваемого изделия применяют струбцины с резиновыми прокладками, пред­варительное снятие заусенцев, округление углов, если это воз­можно по условиям изготовления детали, предварительный отжиг места соединения и т. п. Наиболее рациональной мерой является снижение амплитуды колебаний сварочного наконечника.

При использовании некоторых колебательных систем наблюдается самопроизвольное разворачивание дета­лей относительно друг друга во время сварки. Это означает, что необходимо применение специальных кондукторов, обеспечиваю­щих фиксированное положение деталей в процессе сварки. Ранее было установлено [2], что закрепление образцов для пре­дотвращения их перемещения во время сварки снижает качество сварки. Однако позднее, иссле­дуя это явление, пришли к выводу, что дополнительное “прокру­чивание” образцов повышает прочность сварки до 60%.

Причиной прокручивания, по-видимому, является следующее. При условии интенсивного внешнего трения между свариваемыми деталями и относительно низком зажимном усилии в процессе образования сварного соединения возникают и разрушаются еди­ничные узлы схватывания. Вполне естественно, что в некоторый момент времени на данной половине приполированного пятна может образоваться узел, в то время как на другой — нет. Поскольку амплитуда колебаний между деталями в узле схватывания суще­ственно меньше амплитуды проскальзывания между деталями зоны сварки, в которой еще не возникли узлы схватывания, то наличие результирующей пары сил относительно вертикальной оси узла схватывания вполне вероятно.

При УЗС некоторых металлов наблюдается интенсивное сцеп­ление сварочного наконечника со свариваемым металлом. С точки зрения передачи энергии в зону сварки исследователи [3] считают, что это рационально. С технологической же точки зре­ния это совершенно неприемлемо, так как приварка сварочного наконечника к детали исключает нормальную эксплуатацию сва­рочной машины. Как выявлено, налипание свариваемого металла на сварочный наконечник и износ наконечника имеет сложную природу. По существу — это задача обратная УЗС. Поэтому для сварочного наконечника нужен материал, который обладал бы максимальной когезией поверхностного слоя относительно сва­риваемого материала.

Один из основных параметров процесса, определяющий выде­ление энергии в зоне сварки — сопротивление нагрузки, практи­чески неуправляем. Механические колебательные системы, являющиеся источниками ультразвука, частотно зависимы. Из­менение реактивности в системе приводит к изменению собствен­ной частоты системы. Работа системы вне резонанса, как правило, нецелесообразна. Таким образом, нельзя допускать произвольного изменения геометрических размеров системы, в частности стерж­ней, передающих энергию в зону сварки.

Изложенные особенности ряда технологических факторов весьма существенны. Любой из этих недостатков, выраженный в крайней форме, может поставить под сомнение целесообраз­ность применения УЗС. Вместе с тем УЗС характеризуется весьма ценными технологическими особенностями. Так, микро­смещения деталей относительно друг друга вызывают дробление твердых окислов и выгорание жировых пленок, что приводит к самопроизвольной очистке поверхностей свариваемых металлов и к последующей их сварке. Это позволяет наиболее эффективно решать проблему присоединения токоотводов в различного рода электро- и радиотехнических устройствах, так как УЗС обеспе­чивает переходное сопротивление на уровне сопротивления сва­риваемых металлов. Температура в зоне соединения составляет 0,4—0,6 от температуры плавления металла. Это обеспечивает минимальное искажение исходной структуры, отсутствие выплес­ков и брызг металла.

В силу специфичности процесса при УЗС хорошо свариваются металлы, обладающие малым электрическим сопротивлением: элек­тротехническая медь, чистый и сверхчистый алюминий, серебро.

При УЗС в принципе нет ограничений по нижнему пределу свариваемых толщин различных металлов. Возможно также соеди­нение с существенным перепадом толщин и свойств сваривае­мых металлов (металл — стекло; отношение толщин 1: 1000 и больше).

Для УЗС также характерна: 1) малая энергоемкость; 2) воз­можность питания нескольких сварочных головок от одного гене­ратора и возможность выноса их на значительное расстояние;

3) простота автоматизации процесса работы колебательной си­стемы; 4) гигиеничность процесса.

 

Зона доступа к сварочному наконечнику

Одной из особенностей технологии сварки ультразвуком яв­ляется ограниченность диапазона форм свариваемых деталей. Это объясняется тем, что геометрические размеры элементов коле­бательной системы зависят от заданной частоты. Произвольного изменения размеров резонирующих элементов, посредством кото­рых энергия подводится к зоне сварки, производить нельзя. В этом отношении УЗС обладает существенно меньшими тех­нологическими возможностями, чем, например, контактная сварка.

Зона доступа к сварочному наконечнику, а точнее, возможный диапазон форм изделий, которые можно сварить УЗС, в различ­ных вариантах построения механических колебательных систем складывается из сочетаний нескольких элементов. Например, известны системы, состоящие из преобразователя, волновода про­дольных колебаний и сварочного выступа (рис. 2, а). Зона до­ступа к сварочному наконечнику в этом случае определяется длиной волновода продольных колебаний и высотой сварочного выступа в сочетании с конусностью волновода и точкой его закреп­ления. Сварочный выступ (выступает от образующей концентра­тора на 2—5 мм) является нерезонансным элементом произвольной формы. Свариваемые детали располагаются на массивной опоре. Технологические возможности такой механической колебатель­ной системы ограничиваются относительно простыми формами изделий.

Более совершенной является модификация этой системы (рис. 2, б). Зона доступа в этом случае увеличена за счет приме­нения резонансного звена и удлинения плеча поворота системы. Такими же возможностями обладают системы с продольно-попе­речной схемой волноводов (рис. 2, в). Однако при этом следует отметить, что передача усилия сжатия посредством перемещения опорного элемента нерациональна. Опора перемещается вместе со свариваемыми изделиями. Изделия необходимо фиксировать дополнительным устройством. Такая кинематическая схема ограничивает верхний


предел производительности сварочной машины. Колебательная система, разработанная фирмой “Сонобонд К°” (рис. 2, г), работает в сочетании с резонансной опорой, которая позволила значительно увеличить рабочее пространство у сварочного наконечника. Во ВНИИЭСО при проектировании оборудования была применена схема, показанная на рис. 2, д.


 
 

Рис. 2. Варианты механических колебательных систем для точечной сварки


В ряде случаев применение продольно-поперечной системы со стержнем постоянного сечения также не позволяет решить такую задачу, так как при УЗС в зависимости от механических свойств и соотношения толщин свариваемых металлов положение деталей относительно сварочного наконечника имеет большое значение. Решить такие задачи можно при применении модификаций стержня колебательной системы.

Для сварки изделий в труднодоступных местах можно восполь­зоваться стержнем с Г-образным наконечником (рис. 3, а). Экс­периментально была установлена возможность применения вы­ступа в пределах Уд длины волны в стержне. Смещение точ­ки съема энергии относительно оси стержня существенно уве­личивает возможный диапазон форм свариваемых деталей.

Рис. 3. Формы стержней, передаю­щих энергию в зону сварки

Весьма важным обстоятель­ством, характеризующим воз­можности УЗС, является сварка по контуру как на машинах с продольной системой, так и с резонирующим стержнем, ра­ботающим в режиме изгибных и крутильных колебаний. Такая сварка получена за счет выбора сварочных наконечников специ­альной формы, соответствующей заданной конструкции изделия. Одним из недостатков такого приема является изменение собственной частоты стержня в силу изменения его формы. Это затрудняет расчет его пара­метров.

Вместо стержня возможно применение рабочего инструмента в виде пустотелой резонансной трубки, работающей в режиме из­гибных или крутильных колебаний (рис. 3, б). Ее оптимальные геометрические размеры подбираются в зависимости от частоты, конструктивных особенностей и мощности сварочной машины. Кромка сварочного наконечника на внутренней и наружной сто­ронах срезана с расчетом получить рабочую дорожку шириной 0,5—1,5 мм.

Приварку токоотводов к внутренней или наружной поверх­ности стакана целесообразно осуществить посредством составного стержня с переменным сечением (рис. 3, б). При такой конструк­ции стержня, во-первых, сохраняется достаточно большое сече­ние опорной части резонирующего стержня, чем обеспечивается необходимая жесткость и, во-вторых, увеличивается зона доступа к сварочному наконечнику. Такая конструкция резонирующего стержня позволила, например, приварить стальные токоотводы к корпусу аккумулятора.

 

 

В настоящее время сварка с применением таких стержней практически дала обнадеживающие результаты. Вполне вероятно, что они могут найти применение при изготовлении полупроводни­ковых элементов, особенно при использовании систем крутильных колебаний.

Технологические возможности шовной УЗС в отношении сва­риваемых форм можно в некоторой степени сравнить с возможно­стями машин для контактной сварки.


Рис. 4. Варианты построения механических колебательных си­стем для шовной сварки

 
 

 

 

Шовная ультразвуковая сварка металлов может быть осу­ществлена посредством колебательной системы со сварочным роликом в виде нерезонансного выступа (рис. 4, а). Однако, как установлено, применение нерезонансного выступа в виде ро­лика при шовной УЗС в ряде случаев нежелательно. Технологи­ческие возможности такого устройства весьма ограничены и могут быть использованы только в частных случаях, тем более, что в качестве опорного элемента используются массивные ро­лики.

 

Применение в качестве излучателя ультразвука резонансного диска (рис. 4, б) позволяет увеличить технологические возмож­ности шовной УЗС.

Во ВНИИЭСО разработана колебательная система, в которой в качестве опоры использован также резонансный диск. Это по­вышает эффективность использования шовной УЗС (рис. 4, в).

 

Влияние на сварку формы и материала сварочного наконечника

 

Сварочный наконечник в процессе сварки находится в сложном термомеханическом состоянии. Попеременный нагрев и охлажде­ние, механические нагрузки и элементарное истирание в зоне контакта со свариваемым металлом приводят к его интенсивному износу. Растрескивание и выкрашивание центра наконечника сказывается на качестве сварных соединений. Кроме того, в про­цессе сварки происходит налипание свариваемого материала на поверхность сварочного наконечника. Иногда это налипание на­столько сильно, что его зачистку необходимо производить после одной-двух сварных точек. Такая степень налипания ставит под сомнение целесообразность применения ультразвука. Используют разнообразные формы сварочных на­конечников при УЗС, например, сферической формы (рис. 5, а). Однако ис­пользование такого наконечника понижает стабильность сварки, ибо сфера предопределяет резкое и неравномерное распределение напряжения в зоне сварки. Позже были высказаны соображения о целесообразности применения наконечника с усе­ченной сферой (рис. 5, б), которая позволяла в некоторой сте­пени стабилизировать удельное контактное давление, по край­ней мере в начальный период сварки.

Анализ напряжений, возникающих в зоне сварки, и механизма сварки позволяет прийти к выводу о безусловной целесооб­разности применения сварочного наконечника в виде усеченной конусообразной площадки (рис. 5, в). Такая форма наконечника, как это следует из весьма многочисленных экспериментальных данных, обеспечивает более высокую пластичность и стабиль­ность прочности сварных соединений. Было признано также целе­сообразным наличие на сварочном наконечнике обжимной кромки К, поскольку сферический сварочный наконечник приводит к возникновению существенного зазора между свариваемыми деталями. Это в значительной мере сказывается при сварке разнотолщинных металлов, особенно если один из них более пласти­чен (рис. 5, г).

Работа кромки заключается в следующем. После начала сва­рочного цикла наконечник начинает внедряться в свариваемый металл, который пластически деформируется. После того как сварочный наконечник углубился на расстояние, равное высоте конусной площадки, которая, кстати, выбирается исходя из тол­щины свариваемого металла, обжимная кромка под действием контактного давления обжимает по периметру резонирующего стержня свариваемые детали.

 
 

Рекомендуемая форма наконечника для сварки металлов ми­кротолщин показана на рис. 5, д.

 
 

Рис. 5. Формы сварочных наконечников.

Ряд авторов считает, что состояние поверхности сварочного наконечника является одним из важных факторов, влияющих на образование сварного соединения (на его механическую проч­ность). Так, например, в работе [2] приведены данные об исполь­зовании сварочных наконечников с различной степенью обработки поверхности. Установлено, что при сварке сплавов АМцАМ шлифованным наконечником, сварные соеди­нения обладали низкой прочностью. Удовлетворительные соеди­нения были получены с помощью наконечника, поверхность кото­рого была грубо обработана на наждачном камне. Аналогичные результаты были приведены и в работе [3]. Наилучшие резуль­таты по сварке ряда материалов были получены при использо­вании сварочного наконечника с шероховатой поверхностью. Обработка экспериментальных результатов позволила прийти к выводу [3], что чем прочнее сцепление сварочного наконечника с деталью, тем интенсивнее передача энергии уль­тразвука в зону сварки и прочнее сварное соединение.

Однако некоторые приводят противоположные доводы, считая, что в случае шероховатости наконеч­ника потери на соединение уменьшаются, так как шероховатость предотвращает скольжение между наконечником и свариваемыми образцами. Мнение, что обволакивание сварочного наконечника металлом свариваемого изделия способствует передаче энергии, вряд ли справедливо. Дело в том, что при обволакивании исче­зает граница раздела между сварочным наконечником и деталью. Исходя из общих принципов распространения плоской волны в твердом теле следует, что потери энергии на границе их раздела в таком случае резко уменьшается. Значит надо предполагать, что источником ультразвуковых колебаний должна являться деталь, сцепившаяся со сварочным наконечником. Поскольку она обла­дает массой, то это вызывает изменение частоты колебательной системы и выход ее из резонанса. Таким образом оптимальные ус­ловия переноса энергии будут нарушены (технологически такое сцепление недопустимо).

Были проведены экспериментальные работы по выяв­лению влияния степени обработки поверхности сварочного нако­нечника на механическую прочность соединений при сварке меди М1.

Установлено, что при сварочном наконечнике, обработанном грубым наждачным камнем, среднее разрушающее усилие при испытании образцов Рср = 24 кГ. Внешний вид сварной точки в полной мере соответствует грубо обработанной поверхности наконечника.

В другом случае наконечник был тщательно обработан мелко­зернистой наждачной бумагой. При испытании этой группы образ­цов Рср = 24,5 кГ (по 20 образцам). Существенной разницей между сварными соединениями было состояние наружной поверхности сварной точки: при сварке наконечником с обработанной поверх­ностью сварная точка имела шлифованный вид.

Таким образом, судить по состоянию поверхности сварной точки о качестве соединения в этом случае было нельзя.

Есть сведения, которые говорят о влиянии материала свароч­ного наконечника на прочность сварных соединений. В работе [3] приведены результаты об использовании в качестве материала сварочных наконечников сталей: ЭВ, НЖ-1, 45, Р-18, ШХ15 и др. Установлено, что при сварке меди М1, твердость наконечника существенно влияет на прочность соединения.

Б. Б. Золотарев и др. [2] приводят несколько иные данные. Сварочные наконечники были изготовлены из сормайта, сталей ШХ15 и 45. Сваривалась медь М1. Материал наконечника влияния на прочность соединений не оказал.

Можно было бы привести достаточное число примеров, резуль­таты которых исключают друг друга.

Износоустойчивость сварочного наконечника, способность его не свариваться с деталью, которой он передает энергию ультра­звука, является в настоящее время одной из основных проблем, в области освоения ультразвука для целей сварки.

При работе сварочный наконечник, как уже было ска­зано выше, находится в сложном термомеханическом состоя­нии.

Наконечник одновременно подвержен цикличному термичес­кому нагружению, знакопеременным механическим напряжениям и весьма интенсивному внешнему трению о свариваемый материал. Нагрев наконечника до температуры рекристаллизации сваривае­мых металлов происходит примерно за 0,5—1,5 сек, а охлаждение после окончания сварки в течение 3—5 сек.

Истирание поверхности сварочного наконечника о свариваемую деталь происходит за счет его возвратно-поступательного движе­ния со скоростью относительного перемещения до 2—4 м/сек и усилия сжатия до 10 кГ/мм2.

Следствием такого взаимодействия на поверхности сварочного наконечника, если не происходит процесса его соединения со сва­риваемым металлом, начинается его разрушение, т. е. возникно­вение микротрещин, разрастание их до макроразмеров, выкрашивание кусков металла и т. п. В таких условиях в силу пласти­ческого деформирования наружной поверхности свариваемого металла последний как бы запрессовывается в эти трещины. Возни­кает налипание его на поверхности наконечника. И чем больше и глубже трещины, тем это налипание выражено сильнее.

 

Влияние на сварку состояния поверхности свариваемых металлов

 

Одним из важных преимуществ УЗС является возможность получения надежных сварных соединений, обладающих высокими эксплуатационными характеристиками, без предварительной об работки поверхностей перед сваркой.

Мнение исследователей относительно возможности получения соединений в зависимости от материалов и толщин покрытия разделились.

Некоторые исследователи, не отрицая в принципе возможности образования соединений, на основании экспериментальные результатов пришли к выводу, что наличие различного рода покры­тий препятствует образованию сварных соединений. Другие считают, что максимально достигаемая прочность соединений вообще не может быть получена на необ­работанных образцах.

Однако имеются и другие мнения. Были проведены эксперименты, которые указывают на возможность получения равнопрочных сварных соединении ме­таллов с обезжиренными поверхностями и поверхностями, покры­тыми жировыми пленками; был сделан вывод, что ультразвуковые соединения могут быть выполнены через многие покрытия, например клейкие вещества, бумагу. Однако при этом требуется несколько больше энергии для сварки.

В одной из работ по этому вопросу высказались вполне определенно. Авторы считают, что независимо от исходного состояния поверхности можно полу­чить высокопрочные соединения с незначительным отклонением его от среднего значения разрушающей нагрузки. Только для по­лучения равнопрочных соединений, по мнению авторов, для об­разцов с различным состоянием поверхностей необходимо неоди­наковое количество энергии ультразвуковых колебаний, по­скольку она расходуется не только на деформирование сварной точки, но и на устранение поверхностных пленок. Так, например, для получения соединений одинаковой прочности из меди М1 толщиной b = 1,0 + 1,0 мм на образцах с обезжиренной и про­травленной поверхностью необходимо было время сварки 2,3 сек, в то время как на образцах с поверхностью в состоянии поставки листов — 4 сек. При различных временах сварки были получены также одинаковые значения срезающего усилия сварных соеди­нений, полученных из холоднокатаной меди М1 толщиной b= 1,0+ 1,0 мм с обезжиренной поверхностью, травленой и с нане­сением на нее слоя из смеси технического вазелина с графитом.

Автором в этом направлении была проведена работа, в резуль­тате которой установлено, что характер покрытия и его толщина оказывают значительное противодействие образованию неразъем­ного соединения металлов.

Таким образом было установлено, что при мощности системы рэл == 4,0 кет и амплитуде сварочного наконечника Acв= 16 мкм возможна сварка металлов, имеющих достаточно тол­стые пленки естественных окислов. Снижение прочности сварных соединений меди МЗ при испытаниях на срез по сравнению с об­разцами, протравленными перед сваркой в 50-процентном рас­творе НМОз, составляет 15—20%; получены удовлетворительные соединения и при сварке металлов с жировыми покрытиями. Прочность соединений при этом снизилась на 10—15%.

Покрытие меди оловом, никелем и цинком дает снижение проч­ности соединений до 50%. Изменение режима сварки (давления контактного и времени) не улучшает прочностные характеристики соединения.

Были сделаны попытки получить неразъемные соединения из анодированных материалов. Установлено, что анодирование с тол­щиной пленки 5 мкм резко снижает возможность соединения. Од­нако анодирование не всегда является препятствием для получе­ния сварного соединения. Так, например, была получена сварка анодированной танталовой фольги толщиной 14 мкм и толщиной пленки 1,5 — 2 мкм. Разрушение во всех случаях (20 образцов) происходило по основному металлу.

Для получения качественного сварного соединения необходимо создать условия контактирования свежеочищенных участков ме­таллов. Это может быть обеспечено при условии интенсивного перемещения деталей относительно друг друга.

 







Дата добавления: 2015-08-17; просмотров: 760. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2024 год . (0.053 сек.) русская версия | украинская версия