Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расположение пароизоляции в ограждениях. Примеры правильного и неправильного размещения пароизоляции (при различных направлениях потока влаги).





Для этого в ограждении предусматривают пароизоляционный слой,

представляющий значительное сопротивление паропроницанию. Однако далеко небезразлично,

где ставить этот парозащитный слой: до зоны конденсации или после нее, хотя в обоих случаях

произойдет одинаковое уменьшение потока влаги. На рис. 3.6, а изображено ограждение, в

котором имеется зона конденсации. Для ее устранения поставлен пароизоляционный слой с

наружной стороны ограждения (рис: 3.6, б) или, как говорят, с его теплой стороны (со стороны

более высокой температуры). В этом случае резкое падение парциального давления пара

происходит до основного материала ограждения, благодаря чему линия рх = f (δх) в нем идет

отлого и ниже линии р”х = f (δх). Зона конденсации здесь не образуется. На рис. 3.6, в показано,

что произойдет, если пароизоляция будет поставлена после ограждения — с холодной стороны.

Тот же самый перепад Δр = рн — рпм одинаково распределился по тем: же слоям ограждения, но

изменение последовательности слоев привело к противоположному результату. Теперь малый

наклон линии. рх = f (δх) в материале ограждения сыграл отрицательную роль, вследствие чего

зона конденсации не уменьшилась, а увеличилась. Слой материала с малым паропроницаннем

создал как бы подпор для потока влаги, вследствие чего возникли условия для еще большего

увлажнения материала ограждения.

Таким образом, можно утверждать, что пароизоляционный слой только тогда может привести к

уменьшению или устранению зоны конденсации, когда он расположен перед слоем возможного

образования зоны конденсации или с теплой стороны этого слоя.

При выполнении изоляционных конструкций из нескольких слоен однородного материала между

слоями материала иногда создают паропзоляционные слои из битума, применяемого для

приклеивания плит теплоизоляционного материала к ограждению и друг к. другу. Такого рода

промежуточные пароизоляционные слои только ухудшают положение, если в материале

образуется зона конденсации (рис. 3.6, г). Здесь то же сопротивление паропроницанию, что и в

двух предыдущих случаях, разделено на три одинаковых, слоя, но увлажнение изоляции при этом

не устраняется. Это указывает на то, что пароизоляционный слой должен не раздробляться, а весь

сосредоточиваться с теплой стороны ограждения. Указанное обстоятельство заставляет также

избегать подклеивания теплоизоляционных: материалов сплошным слоем битума или битумной

мастики, а осуществлять подклеивание отдельными точками или полосами (например, шириной 5

см через 15 см).

Из рис. 3,6 видно, что в многослойных ограждениях совершенно не безразличен порядок

расположения слоев из разных материалов. Очевидно, что материалы в ограждении должны

располагаться по ходу потока влаги и в порядке возрастания коэффициента паропроницаемости.

При обратной последовательности каждый последующий слой может оказаться

пароизоляционным слоем с холодной стороны для предыдущего слоя. Если при расчете

изолированного ограждения выявлена зона конденсации, то необходимо определить

сопротивление и толщину пароизоляционного слоя, необходимые для предупреждения

конденсации водяного пара в ограждении. По рис. 3.5 можно установить, что зоны конденсации не

будет, если плотность потока влаги через все ограждение будет уменьшена до величины ша —

плотности потока, проходящего после зоны конденсации на участке ge. __







Дата добавления: 2015-08-18; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия