Физические газоанализаторы
В физических газоанализаторах для анализа компонента в газовой смеси чаще всего используют такие свойства газовой смеси, как теплопроводность, магнитная восприимчивость, тепловой эффект химической реакции и др. Условие выбора физического свойства: аддитивность свойств выбранной физической величины в данной газовой смеси. Газоанализаторы обычно имеют блочно-модульную конструкцию и состоят из нескольких блоков: • выносного первичного измерительного преобразователя (датчика); • блока питания; • блока подготовки газа, включающего фильтр, побудитель расхода, индикатор расхода и т. п.; • измерительного прибора общепромышленного исполнения (расстояние между блоками не более 200 м). Промышленные автоматические газоанализаторы предназначены для определения содержания контролируемых компонентов в газовых смесях технологических процессов, в окружающей воздушной среде, в производственных помещениях. Термокондуктометрические, термомагнитные, термохимические, оптические абсорбционные в ИК- и УФ-области спектра газоанализаторы предназначены в основном для анализа одного компонента в газовой смеси. Хроматографические газоанализаторы предназначены для анализа многокомпонентных смесей. Принцип их действия основан на использовании для разделения смесей способности в различной степени адсорбироваться на выбранном адсорбенте при пропускании газовой смеси через неподвижный слой адсорбента и выделении соответствующих компонентов газов и жидкостей в хроматографической колонке. 10.1.1. Термокондуктомегрические газоанализаторы Принцип действия термокондуктометрических газоанализаторов основан на зависимости теплопроводности газовой смеси от концентрации определяемого компонента. Можно считать, что теплопроводность является аддитивным свойством; для бинарной газовой смеси для данной температуры (в первом приближении) где — молярные доли компонентов; — теплопроводности этих компонентов, Вт/(м • К). Измерив теплопроводность бинарной смеси и зная теплопроводность чистых компонентов, можно вычислить концентрации компонентов в смеси. Применимость метода теплопроводности ограничивается определенной областью концентраций. Принципиальная схема термокондуктометрического газоанализатора показана на рис. . В плечи измерительного неуравновешенного моста включены одинаковые сопротивления, например, в виде платиновых нитей (или полупроводниковых терморезисторов) /, нагреваемых током. По сути, эти сопротивления — нагревательные элементы. Через сопротивления протекает одинаковый постоянный ток и нагревает их. Два сопротивления, включенные в противоположные плечи моста, помещаются в камеры, через которые пропускается измеряемый газ, а два других — в камеры 2, наполненные воздухом (сравнительный газ). До тех пор, пока отвод теплоты от нагревательных элементов в измерительных и сравнительных камерах одинаков, мост находится в равновесии. Рис. 107. Измерительная мостовая схема термокондуктометрического газоанализатора. Если теплопроводность измеряемой газовой смеси, подаваемой в измерительные камеры, отличается от теплопроводности воздуха (выбран как сравнительный газ), то теплоотдача от нагреваемых нитей к стенкам камеры изменяется, что приводит к изменению температуры нитей и, соответственно, к изменению их сопротивления. Равновесие моста нарушится и в диагонали моста cd появляется напряжение разбаланса, пропорциональное содержанию определяемого компонента. Наблюдается такая схема преобразования концентрации анализируемого газа в разбаланс напряжения: Напряжение разбаланса измеряется, например, потенциометром 3. Чтобы избежать проявления дополнительных приборных погрешностей за счет влияния температуры окружающей среды на результат измерения, блок измерительных камер газоанализатора термо-статируют, помещая их, например, в один металлический блок. Недостатки: большая погрешность измерения (основная погрешность составляет 2,5... 10 % в зависимости от интервала измерения), отсутствие селективности. Область применения: непрерывный контроль содержания водорода в азотоводородной смеси в производстве синтетического аммиака; водорода в газе карбидных печей и в производстве электролитического водорода; аммиака в аммиачно-воздушной смеси в производстве азотной кислоты; диоксида серы в печном газе в производстве серной кислоты и т. д.
|