Альтернативные подходы к исследованию кредитоспособности предприятия-заемщика
Большинство используемых методов опенки кредитоспособности базируются на анализе прошлых показателей финансового состояния заемщика, в то время как при анализе заемщика основная задача заключается в определении финансового состояния предприятия и ею способности выполнит кредитные обязательства в перспективе. С этой целью в качестве дополнительных методов опенки кредитоспособности заемщика можно использовать различные методы прогнозирования вероятного банкротства предприятий. На сегодняшний день существует более сотни различных методик, посвященных прогнозу банкротства предприятия, однако они были адаптированы для банковской системы США, и вопрос об их применимости в российских условиях по-прежнему остается открытым. Западный опыт показывает, что модели предсказания банкротства, как правило, состоят из различных коэффициентов с некоторыми весами, причем то, какие именно коэффициенты входят в модель, определяется на основе либо статистических, либо экспертных оценок. Наиболее распространенным и относительно простым механизмом прогнозирования вероятности банкротства предприятий-заемщиков является множественный дискриминантный (или «кластерный») анализ. Общий вид дискриминантной функции при таком анализе имеет вид [17]: В данной формуле а0 и аi представляют собой коэффициенты регрессии, аi-факторы, характеризующие финансовое состояние заемщика (например, финансовые коэффициенты). Коэффициенты регрессии рассчитываются в результате статистической обработки данных по выборке фирм, которые либо обанкротились, либо сумели «выжить» в течение некоторого периода. Все компании делятся на две группы — те, чье финансовое положение стабильно, и те, кому грозят денежные затруднения вплоть до банкротства. Если Z— оценка какой-либо компании — находился ближе к показателю средней компании-банкрота, то при условии продолжающею ухудшения ее положения она обанкроться. Если менеджеры компании и банк, осознав финансовые трудности, предпримут шаги, чтобы предотвратить усугубление ситуации, то банкротства не произойдет: Следовательно, Z-оценка является сигналом раннею предупреждения. Для применения множественного дискриминантного анализа необходима репрезентативная выборка по предприятиям, дифференцированным по отраслям и размерам. Трудность заключается в том, что внутри отрасли не всегда возможно найти достаточное количество обанкротившихся фирм, чтобы рассчитать коэффициенты регрессии. Наиболее известными моделями этого типа являются модели Альтмана. В пятифакторной модели Альтмана индекс кредитоспособности (Z) представляет собой функцию определенных финансовых показателей, характеризующих экономический потенциал предприятия и результаты его работы за истекший период, и имеет вид [4]: Z=1.2xX1 + 1.4xX2 + 3.3xX3 + 0.6xX4 + X5 где X1 — оборотный капитал/ сумма активов; Результаты многочисленных расчетов по модели Альтмана показали, что обобщающий показатель Z может принимать значения в пределах [-14,+22]. Отнесение предприятия к определенному классу надежности производится на основании значений индекса Z, представленных в табл. 6. Возможности применения данной модели нее первоначальном виде для предсказания вероятности банкротств российских предприятий ограничены. Отсутствие в России статистических материалов по организациям-банкротам не позволяет скорректировать методику вычисления весовых коэффициентов и пороговых значений для данной модели. Также возникают существенные сложности с расчетом коэффициента Х4, отражающею суммарную рыночную стоимость акций предприятия, в силу того что в настоящий момент в нашей стране отсутствует информация о рыночной стоимости акций большинства предприятий. Кроме того, при разработке и применении математических методов управления кредитным анализом следует учитывать, что процесс выдачи кредита сложен на всех этапах и для него важны как понимание технических аспектов моделирования, так и межличностные отношения сторон. Так, например, Альтман предлагал использовать его «количественную модель как дополнение к «скорее качественному и интуитивному» подходу инспекторов кредитных отделов банков, отмечая, что его модель не способна заменить опенки, которые предлагают служащие банка. Данная модель и получаемые Z-оценки могут послужить ценным инструментом определения общей кредитоспособности клиентов и сигналом раннего предупреждения о возможности негативного изменения финансового состояния. Кроме того, любое прогнозное решение является субъективным, а рассчитанные значения критериев имеют скорее характер «информации к размышлению». Использование комплексной системы формализованных и неформализованных критериев позволяет учесть не только да иные бухгалтерского учета и отчетности, но и дополнительную информацию (например, устойчиво низкие коэффициенты ликвидности, ухудшение отношений с учреждениями банковской сферы, недостаточную диверсификацию деятельности или потерю ключевых контрактов). Для эффективного анализа вероятности банкротства заемщиков российские банки успешно адаптируют зарубежные методики к специфике российских экономических условий, что в результате позволяет построить адекватную модель, отвечающую необходимым требованиям. Для решения этой задачи прежде всею определяются категории показателей, которые следует включить в итоговую систему оценки. В качестве основных факторов изменения финансового состояния и, следовательно, кредитоспособности заемщика российские кредитные аналитики выделяют следующие показатели: При этом включать в модель тесно связанные друг с другом показатели нецелесообразно. Модель №1: Модель №2: Модель №3: Изучая опыт коммерческих банков в области анализа кредитоспособности предприятий-заемщиков, следует подчеркнуть, что на сегодняшний день и российские, и зарубежные банки в своей практике ориентируются на сложные и дифференцированные методики оценки. Все применяемые банками, как в международной, так и в российской кредитной практике методики и принципы оценки кредитоспособности имеют свои преимущества и недостатки, поэтому для эффективного проведения анализа финансового состояния и кредитоспособности потенциальных и существующих заемщиков коммерческим банкам следует построить собственную систему комплексного анализа на основе нескольких взаимодополняющих методик и принципов.
|