Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Представление чисел с плавающей запятой сегодня






Разработчики «K-C-S» победили и теперь их детище воплотилось в стандарт IEEE754. Числа с плавающей запятой в нем представлены в виде знака (s), мантиссы (M) и порядка (E) следующим образом:

(-1)s × 1.M × 2E

Замечание. В новом стандарте IEE754-2008 кроме чисел с основанием 2 присутствуют числа с основанием 10, так называемые десятичные (decimal) числа с плавающей запятой.

Чтобы не загромождать читателя чрезмерной информацией, которую можно найти в Википедии, рассмотрим только один тип данных, с одинарной точностью (float). Числа с половинной, двойной и расширенной точностью обладают теми же особенностями, но имеют другой диапазон порядка и мантиссы. В числах одинарной точности (float/single) порядок состоит из 8 бит, а мантисса – из 23. Эффективный порядок определяется как E-127. Например, число 0,15625 будет записано в памяти как


Рисунок взят из Википедии

В этом примере:

 

· Знак s=0 (положительное число)

· Порядок E=011111002-12710 = -3

· Мантисса M = 1.012 (первая единица не явная)

· В результате наше число F = 1.012e-3 = 2-3+2-5 = 0,125 + 0,03125 = 0,15625

 

3.1 Специальные числа: ноль, бесконечность и неопределенность


В IEEE754 число «0» представляется значением с порядком, равным E=Emin-1 (для single это -127) и нулевой мантиссой. Введение нуля как самостоятельного числа (т.к. в нормализованном представлении нельзя представить ноль) позволило избежать многих странностей в арифметике. И хоть операции с нулем нужно обрабатывать отдельно, обычно они выполняются быстрее, чем с обычными числами.

Также в IEEE754 предусмотрено представление для специальных чисел, работа с которыми вызывает исключение. К таким числам относится бесконечность (±∞) и неопределенность (NaN). Эти числа позволяет вернуть адекватное значение при переполнении. Бесконечности представлены как числа с порядком E=Emax+1 и нулевой мантиссой. Получить бесконечность можно при переполнении и при делении ненулевого числа на ноль. Бесконечность при делении разработчики определили исходя из существования пределов, когда делимое и делитель стремиться к какому-то числу. Соответственно, c/0==±∞ (например, 3/0=+∞, а -3/0=-∞), так как если делимое стремиться к константе, а делитель к нулю, предел равен бесконечности. При 0/0 предел не существует, поэтому результатом будет неопределенность.

Неопределенность или NaN (от not a number) – это представление, придуманное для того, чтобы арифметическая операция могла всегда вернуть какое-то не бессмысленное значение. В IEEE754 NaN представлен как число, в котором E=Emax+1, а мантисса не нулевая. Любая операция с NaN возвращает NaN. При желании в мантиссу можно записывать информацию, которую программа сможет интерпретировать. Стандартом это не оговорено и мантисса чаще всего игнорируется.

Как можно получить NaN? Одним из следующих способов:

 

· ∞+(- ∞)

· 0 × ∞

· 0/0, ∞/∞

· sqrt(x), где x<0


По определению NaN ≠ NaN, поэтому, для проверки значения переменной нужно просто сравнить ее с собой.


Зачем нулю знак (или +0 vs -0)


Любознательный читатель вероятно уже замелил заметил, что в описанном представлении чисел с плавающей запятой существует два нуля, которые отличаются только знаком. Так, 3·(+0)=+0, а 3·(-0)=-0. Но при сравнении +0=-0. В стандарте знак сохранили умышленно, чтобы выражения, которые в результате переполнения или потери значимости превращаются в бесконечность или в ноль, при умножении и делении все же могли представить максимально корректный результат. Например, если бы у нуля не было знака, выражение 1/(1/x)=x не выполнялось бы верно при x=±∞, так как 1/∞ и 1/-∞ равны 0.

Еще один пример:
(+∞/0) + ∞ = +∞, тогда как (+∞/-0) +∞ = NaN

Чем бесконечность в данном случае лучше, чем NaN? Тем, что если в арифметическом выражении появился NaN, результатом всего выражения всегда будет NaN. Если же в выражении встретилась бесконечность, то результатом может быть ноль, бесконечность или обычное число с плавающей запятой. Например, 1/∞=0.








Дата добавления: 2015-08-27; просмотров: 819. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия