Очень распространенная ошибка при работе с float-ами возникает при проверке на равенство. Например,
float fValue = 0.2;if (fValue == 0.2) DoStuff();
Ошибка здесь, во-первых, в том, что 0,2 не имеет точного двоичного представления, а во-вторых 0,2 – это константа двойной точности, а переменная fValue – одинарной, и никакой гарантии о поведении этого сравнения нет.
Лучший, но все равно ошибочный способ, это сравнивать разницу с допустимой абсолютной погрешностью:
if (fabs(fValue – fExpected) < 0.0001) DoStuff(); // fValue=fExpected?
Недостаток такого подхода в том, что погрешность представления числа увеличивается с ростом самого этого числа. Так, если программа ожидает «10000», то приведенное равенство не будет выполняться для ближайшего соседнего числа (10000,000977). Это особенно актуально, если в программе имеется преобразование из одинарной точности в двойную.
Выбрать правильную процедуру сравнения сложно и заинтересованных читателей я отсылаю к статьеБрюса Доусона. В ней предлагается сравнивать числа с плавающей запятой преобразованием к целочисленной переменной. Это — лучший, хотя и не портабельный способ:
bool AlmostEqual2sComplement(float A, float B, int maxUlps) { // maxUlps не должен быть отрицательным и не слишком большим, чтобы // NaN не был равен ни одному числу assert(maxUlps > 0 && maxUlps < 4 * 1024 * 1024); int aInt = *(int*)&A; // Уберем знак в aInt, если есть, чтобы получить правильно упорядоченную последовательность if (aInt < 0) aInt = 0x80000000 - aInt; //aInt &= 0x7fffffff; //(см. комментарий пользователя Vayun) // Аналогично для bInt int bInt = *(int*)&B; if (bInt < 0) bInt = 0x80000000 - bInt; /*aInt &= 0x7fffffff;*/ unsigned int intDiff = abs(aInt - bInt); /*(см. комментарий пользователя Vayun)*/ if (intDiff <= maxUlps) return true; return false;}
В этой программе maxUlps (от Units-In-Last-Place) – это максимальное количество чисел с плавающей запятой, которое может лежать между проверяемым и ожидаемым значением. Другой смысл этой переменной – это количество двоичных разрядов (начиная с младшего) в сравниваемых числах разрешается упустить. Например, maxUlps=16, означает, что младшие 4 бита (log216) могут не совпадать, а числа все равно будут считаться равными. При этом, при сравнении с числом 10000 абсолютная погрешность будет равна 0,0146, а при сравнении с 0.001, погрешность будет менее 0.00000001 (10-8).
Проверка полноты поддержки IEE754
Думаете, что если процессоры полностью соответствуют стандарту IEEE754, то любая программа, использующая стандартные типы данных (такие как float/double в Си), будет выдавать один и тот же результат на разных компьютерах? Ошибаетесь. На портабельность и соответствие стандарту влияет компилятор и опции оптимизации. Уильям Кэхэн написал программу на Си (есть версия и для Фортрана), которая позволяет проверить удовлетворяет ли связка «архитектура+компилятор+опции» IEEE754. Называется она «Floating point paranoia» и ее исходные тексты доступны для скачивания. Аналогичная программа доступна для GPU. Так, например, компилятор Intel (icc) по умолчанию использует «расслабленную» модель IEEE754, и в результате не все тесты выполняются. Опция «-fp-model precise» позволяет компилировать программу с точным соответствием стандарту. В компиляторе GCC есть опция «-ffast-math», использование которой приводит к несоответствию IEEE754.
Заключение
Напоследок поучительная история. Когда я работал над тестовым проектом на GPU, у меня была последовательная и параллельная версия одной программы. Сравнив время выполнения, я был очень обрадован, так как получил ускорение в 300 раз. Но позже оказалось, что вычисления на GPU «разваливались» и обращались в NaN, а работа с ними в GPU была быстрее, чем с обычными числами. Интересно было другое — одна и та же программа на эмуляторе GPU (на CPU) выдавала корректный результат, а на самом GPU – нет. Позже оказалось, что проблема была в том, что этот GPU не поддерживал полностью стандарт IEEE754 и прямой подход не сработал.
Сейчас арифметика с плавающей запятой почти совершенна. Практически всегда наивный подход сработает, и программа, не учитывающая все ее особенности, выдаст правильный результат, а описанные подводные камни касаются только экзотических случаев. Но нужно всегда оставаться бдительным: в таком вопросе как компьютерная математика легко наступить на грабли.
P.S. Спасибо пользователю uqlock за важное замечание. Деньги нельзя хранить в виде числа с плавающей запятой, т.к. в этом случае нельзя выделить значимые разряды. Если в языке программирования нет типов данных с фиксированной запятой, можно выйти из положения и хранить деньги в виде целого числа, подразумевая копейки (иногда доли копеек).