Студопедия — Потенциальное поле, условие потенциальности в односвязной области на плоскости. Связь с независимостью криволинейного интеграла от пути интегрирования
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Потенциальное поле, условие потенциальности в односвязной области на плоскости. Связь с независимостью криволинейного интеграла от пути интегрирования






] существует гладкая поверхность S n=n(M) McS n(M)-непрерывная единичная нормаль |n|=1 для любой McS DcR3 ScD

Предположим, что в D наблюдается течение,установившееся(стационарное) движение, не сжимаемой жидкости. V(x,y,z) – скорость в каждой точки. V(x,y,z)=P(x,y,z)*i+Q(x,y,z)*j+R(x,y,z)*k

P,Q,R - непрерывны в области D. Требуется найти поток жидкости через поверхность S в направлении нормали n(M), т.е. определить V жидкости, протекающий за единицу времени,

через поверхность S в направлении нормали n(M). V-const S-плоская П= V=Sосн*h Vi=ΔSi*h

Vi ≈ n=1Σ∞ΔSi*h=n* n=1Σ∞ΔSi |V|=V(длина V) n=V*sinφ=V*cos(п/2 -φ)=(V,n)=>П=V=S*(V,n) S*(V,n)= П

Поток n(M)(λ→0) S=i=1UnΔSi для любого ΔSiсMi Mi(xi,yi,zi) Пi-поток жидкости через ΔSi П= n=1Σ∞Пi.Для нахождения Пi,заменим поверхность ΔSi частично касательной плоскостью к поверх S,проходящей через Mi. В качестве ΔЪi возьмём проекцию ΔSi на касательную плос-ть в Mi. Такую замену в приближённом варианте можно сделать, т.к касательная плоск-ть тесно прилегает к повер-ти в окрестности т.касания.Поскольку U(cкорость) непрерывна на S,то по св-ву непрерыв ф-ций U(M)=U(x,y,z)=U(Mi). Поэтому для нахождения Пi≈ΔЪi*(V(Mi),ni) для любого i=1..n, т.к. n(M) ≈n(Mi) =ni для любого Мс ΔSi,т.е.)можно считать постоянной на ΔSi

ΔЪi≈ ΔSi равенство тем точнее, чем < λ=> Пi≈(V(Mi),ni) ΔSi=> П= n=1Σ∞Пi= n=1Σ∞(V(Mi),ni) ΔSi=>П= n=1Σ∞(U(Mi),ni)* ΔSi.Равенство тем точнее,чем меньше λ-ранг разбиения.П=limλ→0 n=1Σ∞(U(Mi),n(Mi))* ΔSi. U(Mi),n(Mi) непрерыв на S=>сущ конеч limλ→0 n=1Σ∞(U(Mi),n(Mi))* ΔSi и поэтому П=SSs(U(x,y,z),n(x,y,z)ds.Такие интегралы от скалярного произвед (U,n) наз-ся поверх-ым интегралом 2 рода. SSs(P(x,y,z)dydz+Y(x,y,z)dzdx+R(x,y,z)dxdy.

] Ф(М)=Pi+Qj+Rk-непрерыв векторное поле.ScD,S-гладкая,двусторонная. SSs(Ф,n)ds-ПИ 2-ого рода от поля Ф.Теорема сущ: ] Ф(М)-непрерывна,S-гладкая=>сущ ПИ 2-ого рода.

 

Формула вычисления криволинейного интеграла 2-го рода. Пример.

Если кривая Г гладкая и задана уравнением x=x(t) y=y(t) z=z(t) tc[a,b], а функции P,Q,R непрерывны в области D, то ∫P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)=

ab[P(x(t),y(t),z(t))*x’(t)+Q(x(t),y(t),z(t))*y’(t)+R(x(t),y(t),z(t))*z’(t))]dt

dx(t)=x(t)dt.

Замечание: В плоском случает (ф(х,у)=Pi+Qi) формула примет вид то ∫P(x,y)dx+Q(x,y)dy= ab[P(x(t),y(t))*х’(t))+Q(x(t),y(t))*y’(t)]dt

Пример:

∫(y-1)dx+xydy=02 ((x2-1)+x*x2*2x)dx=02(x2+

2x-1)dx

Формула Грина. Независимость криволинейного интеграла от пути интегрирования(док).

Формула Грина: ] функции P(x,y),Q(x,y) непрерывны в области D вместе со своими частными производными. Контур С лежит в области Dвместе со своей внутренностью. Контур С является границей компакта Ъ, при чём на С выбрано положительное направление обхода контура, т.е. при обходе контура С, его внутренность остаётся локально слева, тогда криволинейный интеграл по контуру: С∫Pdx+Qdy= Ъ∫∫ (ðQ/ðx)-(ðP/ðy)dxdy

Независимость: ∫Pdx+Qdy+Rdz(P,Q,R непрерывны в D) Г называется независящим от пути ин-я в этой области, если для любых 2-х кривых Г12 cD с общим началом и концом.

Г1Pdx+Qdy+Rdz= ∫Г2Pdx+Qdy+Rdz

Г Pdx+Qdy не зависит от пути инт-я в D необходимо и достаточно чтобы для любого контура С из D ∫с Pdx+Qdy=0

Док-во: необходимость: ] ∫Г Pdx+Qdy не зависит от пути в области D ] С любой контур cD

A,B разбивают c на 2 кривых =>C= Г12, ∫Г1Pdx+Qdy = ∫Г2Pdx+Qdy т.к. интеграл не зависит от пути по определению => = ∫1Pdx+Qdy= -∫Г2Pdx+Qdy=> ∫Г1Pdx+Qdy+ ∫Г2Pdx+Qdy=0

CPdx+Qdy по свойству аддитивности интервалов => ∫cPdx+Qdy=0 ч.т.д.

достаточность: ] любое С cD ∫CPdx+Qdy=0 док-м что ∫сPdx+Qdy не зависит от выбора пути в обл-ти D. С=Г12 положительную ориентацию => тогда ∫cPdx+Qdy=0=> ∫г1UГ2Pdx+Qdy=0 => по свойству аддитив-ти

1Pdx+Qdy+ ∫Г2Pdx+Qdy=0

если изм-ть направление, то поменяется знак в интеграле ∫Г1Pdx+Qdy-∫Г2Pdx+Qdy=0=> ∫Г1Pdx+Qdy=∫Г2Pdx+Qdy=> интеграл не зависит от пути ч.т.д.

 

 

Потенциальное поле, условие потенциальности в односвязной области на плоскости. Связь с независимостью криволинейного интеграла от пути интегрирования

(док). ≈

Опред-е: Поле Ф называется потенциальным в D, если существует непрерывно диффир. фун-я U(x,y,z): dU=(ðu/ðx)dx+(ðu/ðy)dy+(ðu/ðz)dz=Pdx+Qdy+Rdz,т.е ðu/ðx=P ðu/ðy=Q ðu/ðz=R U(x,y,z) –потенциал поля Ф

Опред-е: Область DcR3, она наз-ся односвязной, если для любого С-замкнутого контура из D, существует повер-ть ScD, такая что граница S совпадает с контуром С.

Опред-е: Ротором векторного поля Ф (rotФ) наз-ся функция: | i j k |

Ф = | ð/ðx ð/ðy ð/ðz| =

| P Q R |

 

= i(ðR/ðy- ðQ/ðz) – j(ðR/ðx- ðP/ðz) + k(ðQ/ðx - ðP/ðy)

Теоремка: Если Ф(x,y)=Pi+Qi для того чтобы поле Ф было потенциальным в односвязной DcR2 необходимо и достаточно: P и Q имеют непрерывные частные производные при этом потенциал поля интеграл (XoYo)(x,y)P(x,y)dx+Q(x,y)dy=U(x,y),где (xo yo­)сD а (x,y) конец кривой. От формы кривой не зависит.

Док-во: Док-м частично, если поле потенциально, то условие должно быть выполнено ðu/ðx=P ðu/ðy=Q => ðP/ðy=ð2U/ðxðy ðQ/ðх=ð2U/ðxðy

1 2

1=2=>условие ðP/ðy = ðQ/ðх выполнено

 

Поле Ф=Pi+Qi+Ri потенциально в односвязной обл-ти D ó(н и д) rotФ=0

 

] D-односвязная об-ть в R3 для того чтобы

Г∫(Ф, dr) не зависит от пути в D необх и достат-но rotФ=0

 







Дата добавления: 2015-08-27; просмотров: 330. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия