Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Криволинейный интеграл l-го рода, его механический смысл. Вычисление, пример.





т. Мо- материальная точка кривой; Δl длина и дуга кривой, которой принадлежит т. М0; Δm –масса кусочка Δl

Если существует конечный limΔl->0Δm/ Δl=j(М0) [М0 cΔl]он наз-ся линейной плотностью кривой в М0. Будем полагать, что известно j(М0)-непрерывная функция(m ищем по плоскости). Разобьём кривую l последовательностью А0 А1,… Аn на каждой из малых дуг (Аi-1 Аi) c Mi(xi yi zi)i=1…n j(М) непрерывна

Из определения линейной плотности вытекает что в случае однородной материальной кривой m=l* j0

j0-постоянная,т.к. j(М)= limΔl->0Δm/ Δl

Обозначим Δmi дуги Аi-1 Аi, , m=i=1Σn Δmi

Будем считать. Что Аi-1 Аi настолько малы, что

j(М)= j(Мi)это приближенное равенство тем точнее, чем меньше дуга Аi-1 Аi(это достигается увеличением числа точек Аn), поэтому обоз-в Δli длину Аi-1 Аi можем восп-ся m=l* j0 => m= Δli* j(Мi). Тогда m = i=1Σn j(Мi)* Δli обозначим λ=мах i=1(diam Аi-1 Аi) – ранг разбиения кривой n→∞,если λ→0, то длина Аi-1 Аi→0.

Если существует конечный limλ→0 i=1Σn j(Мi)* Δli=m. j(М) = j(x,y,z) в кач-ве jможем взять любую фун-ию заданную кривой j. Составим интегральную сумму и рассмотрим её предел при

λ→0, если он существует и конечен и не зависит ни от способа разбиения кривой Г, ни от способа выбора т Мi, то он наз-ся криволинейным 1-ого рода от фун-ии Г и обоз-ся:

Г∫ j(М)dl = Г∫ j(x,y,z)dl

Теорема существования:

] кривая Г задана параметрически (x(t),y(t),z(t)) – непрер диффир) Тогда j(М) непрер на Г, то существ Г∫ j(М)dl. Формула для вычисления интеграла 1-ого рода. При выполнении условий теор существ мб доказана след формула:

Г∫ j(М)dl= ab j(x(t),y(t),z(t))*√ ((x’(t))2, (y’(t))2, (z’(t))2)dt

Пример:

] Г задана ур-ями x=a*cost y=asint z=t t[0,2п] Г мат крив и имеет плот-ть j(x,y,z)=z+1

m= Г∫ (z+1)dl = 02п((t+1)√a2sin2t+a2cos2t+1)dt =√a2+102п((t+1)dt=t2/2+t 0|2п=2п(2п+1)√a2+1

 

5. Поверхностный интеграл 1-го рода, его механический смысл. Вычисление. Те-
орема существования
.

Обозначим m-массу материальной пов-ти S Будем считать, что из-тна j(M) в каждой т M M0 cS ΔS → M0.

diam ΔS обозначим Δm-массу кусочка ΔS ΔS=Δm/ ΔS

Если существует конечный lim Δm/ ΔS {M0 cS, diam ΔS->0} –наз-ся плотностью =j(M0)

j(M)-непрер на S. Заметим, что в случае однородности повер-ти m=j0*S

j0 – плоскость. Разобьём поверхность S=U1Si. В каждом ΔSi берем точки Mi

ΔSi-> Mi(xi yi zi)i=1…n Из непрерывности j(М)

=>что j(М) j(Мi) для любого М с j(M0), если

diam ΔSi мал. Равенство тем точнее, чем меньше diam ΔSi λ=max(diam ΔSi) –ранг разбиения поверхности. Обозначим Δmi – масса ΔSi =>можно применить в приближенном варианте формулу m=j0*S.

Δmi = j(Mi)* ΔSi=> m= i=1Σn Δmi =

i=1Σn j(Mi)* ΔSi. Это равенство тем точнее, чем меньше λ. Поэтому естественно считать, что m= limλ→0 i=1Σn j(Мi)*ΔSi

Если j(М)-произвольная функция, заданная на поверхности S и существует конечный limλ→0 i=1Σn j(Мi)*ΔSi и он не зависит ни от способа разбиения ни от способа выбора т. Mi, то он наз-ся поверхностным интегралом первого рода по поверхности S и обоз-ся

∫∫S j(М)ds.

Вычисление: S: z=φ(x,y)-непрер диффир в Ъ x=x y=y

∫∫S j(x,y,z)ds=∫∫Ъ j(x,y, φ(x,y))* √1+ (φx’(x,y))2+(φy’(x,y))2 dxdy

Теорема существования:

S-гладкая поверхность. ПИ 1рода существует, если j(M)-непрерывна на S.

Вычисление поверхностного интеграла 2-города.

S: z= φ(x,y)-непрер диффир в Ъ тогда z- φ(x,y)=0

F(x,y,z)=0 grad(F(x,y,z))= (ðF/ ðx)i-(ðF/ ðy)j+(ðF/ ðz)k=-(ðφ / ðx)i-(ðφ/ ðy)j+1k≠0=> grad направлен по нормали поверхности

n(M)=gradF(M)/| gradF(M)|=(-φxi—φyi+k)/(√ (φ’x)2+(φ’y)2+1)

Найдём ∫∫sPdydz+Qdxdz+Rdxdy по поверхности,которую определяет n(m). ∫∫sPdydz+Qdxdz+Rdxdy=∫∫s(Ф,—φyi+k)/(√ (φ’x)2+(φ’y)2+1)ds=∫∫ъ(Ф,—φyi+k)/(√ (φ’x)2+(φ’y)2+1)* (√ (φ’x)2+(φ’y)2+1)dxdy =∫∫ъ[(-P* φ’x – Q*φ’y+R)]dxdy=∫∫S Pdydz +Qdxdz +Rdxdy

Дивергенция векторного поля, Формула Остроградского-Гаусса. Пример.

Дивергенция поля Ф (div Ф) = ðP/ðx+ðQ/ðy+ðR/ðz.если div Ф=0,то Ф –соиедальное поле=>в D нет источников и стоков. Формула О-Г: ] V-компакт cR3,граница v=S-гладкая или кусочно гладкая(т.е S можно разбить на конечное число поверхностей, каждая из которых гладкая),на S выбрано внешнее направление нормали, Ф(x,y,z)=Pi+Qj+Rk- непрерыв.диффир=> ∫∫s(Ф,n)ds=∫∫∫v[ðP/ðx+ðQ/ðy+ðR/ðz]dv, ∫∫s(Ф,n)ds=∫∫∫vdivФdxdydz.

Пример: Ф(x,y,z)=-yi+(y-2z)j+(2x-z)k. п=∫∫s(Ф,n)ds=∫∫∫vdivФdxdydz=∫∫∫v0dxdydz=0.divФ=0

Ротор векторного поля, формула Стокса.

] Ф в D и непрерыв-диффирен,тогда ∫LPdx+Qdy+Rdz=∫∫s(rotФ,n)ds.На L выбрано + направление обхода.

Опред-е: Ротером векторного поля Ф (rotФ) наз-ся функция: | i j k |

Ф = | ð/ðx ð/ðy ð/ðz| =

| P Q R |

 

= i(ðR/ðy- ðQ/ðz) – j(ðR/ðx- ðP/ðz) + k(ðQ/ðx - ðP/ðy)

Сходящиеся и расходящиеся числовые ряды. Примеры. Необходимое условие







Дата добавления: 2015-08-27; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия