Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сходимости (док).





] a1, a2… an –последов-ть чисел n=1Σan = a1+ a2+… +an (1) – ряд из an

Sn = a1+ a2+… +an – полная частная сумма ряда (1)

Если существует limn→∞ Sn= S –то ряд (1) наз-ся сходящимся и S = n=1Σan

Если не существует limn→∞ Sn= S –то ряд (1) наз-ся расходящимся и у него нет суммы.

Пример: Sn=1+1+…1 = n limn→∞ Sn= limn→∞n=∞=>расходится

Sn=0+0+…0 = 0 limn→∞ Sn= limn→∞0=0=>сходится

Необходимое условие

Сходимостиn→0.Док-во:рассмотрим Sn- Sn-1=(а1+….+аn)-(а1+….+аn-1)= аn limn→∞аn= limn→∞(Sn- Sn-1)= limn→∞Sn-limn→∞Sn-1=S-limm→∞Sm=S-S=0

Свойства числовых рядов (док).

1)если (1) сх-ся,0не=к=const,то сх-ся (2) n=1Σan*к=k*a1+ k*a2+ k*an,S= n=1Σan

Док-во Ъn –частная сумма ряда (2)

Ъn = k*a1+ k*a2+…+ k*an = k*(a1… an) = k*Sn limn→∞(k*Sn) = k*(limn→∞(Sn) = k*S=>(2) –сх-ся

n=1Σ(k*an) = k*n=1Σ(an)

Сх-ся (2) <=> Сх-ся (1)

2)(1) cх-ся и сх-ся n=1Σbn (3) =>сх-ся n=1Σ∞ (an+bn) (4)

3)Если (5) отличается от (1) на конечное число слагаемых, то (5) сх-ся ó (1),т.е если к (1) добавить конеч число слагаемых или убрать,то это не повлияет на сходимость

12.Признаки сходимости знакоположительных рядов (1 доказать). Пример. знакоположительный ряд – если аn>0.

1)Первый признак сравнения:] (1) и (2)-знакоположительны и an<=bn, из сх-ти (2)=> сх-ть (1) и также расходимость

2)Второй признак сравнения.Если (1) и (2)- знакополож и существует limn→∞ (an/bn)не=0,то (1)-сх-ся ó (2) сх-ся

3)Признак Даламбера. Если существует limn→∞ (an+1/an)=S для ряда (1) и S=<1 –cх-ся или >1→рас-ся.Если S = 1,то признак не даёт ответа.

4)Радикальный признак Коши.Если (1)-знакоположит и сущ limn→∞n√an=S.S= <1 –cx или >1 pacх

Знакочередующиеся ряды. Признак Лейбница (док). Пример.

Опред: n=1Σan (1) –ряд наз-ся знакопеременным, если среди его членов есть как «+» так и «-» числа

Опред: Знакопеременный ряд (1) наз-ся значередующимся, если an- an-1<0 для любого ncN

U1- U2+ U3- U4…(2) Un >0

Если ряд (2) – знакочередующийся и Un ↓ => (Un+1 <= Un для любого n) Un→0 => (2) сход-ся S<= U1

Док-во РассмотримS2n=(U1- U2)+ (U3- U4)+… (U2n-1 - U2n) >=0 => S2n= U1(U2+ U3)(- U4 +U5) +…+ (-U2n-2 +U2n-1) - U2n <= U1 - U2n

Un→0 => U2n→0=> S2n<= U1 - U2n ó S2n + U2n <= U1 U2n<= M n limn→∞ U2n=0

limx→xof(x)=c =>f(x) огранич, т.е. |f(x)|<= M xc(xo-б, xo+б) xo=∞

ð S2n<= U1+M=> S2n→S(n→∞) S2n

S2n(n+1)>= S2n для любого n

ð limn→∞ S2n=S-конеч S>= U1

Пример: n=1Σ (-1)n-1/n= 1 – 1/2 +1/3 -1/4+…+(-1)n-1/n +…- Un=1/n→0(n→∞)

Un+1=1/(n+1)<1/n= Un для любого n

Un+1< Un, т.е. Un↓ =>сход-ся

Абсолютная и условная сходимость знакопеременных рядов. Пример.

Для исследования на сходимость произвольных знакопеременных рядов полезна след теорема

Абсолютная сходимость ряда: n=1Σan = a1+ a2+… +an+ (1)

Если (1)- знакопеременный ряд и ряд n=1Σ|an| (2) –сход-ся, то ряд (1) тоже сх-ся и наз-ся абсолютносходящимся.

Замечание: Если знакопеременный ряд сход-ся, то это не значит, что он сход-ся абсолютно.

Такие ряды, которые сход-ся, но не сход-ся абсолютно наз-ся условно сходящимися.

Пример: n=1Σ (sin n)/n2 n=1Σ|(sin n)/n2|(применим 1-ый признак ср-я)

(sin n)/n2<=1/n2 n=1Σ1/n2 –сх-ся =>сход-ся по 1-ому признаку срав-я =>абсолютно сход-ся

Функциональные ряды и их свойства.

Опред:Ряд Un(x)=U1(x)+ U2(x)+…+ Un(x)+…(1) [a,b], такой ряд наз-ся функциональным рядом

Опред: ] [a,b]с хо, если сод-ся числовой ряд n=1Σ Un(xо), то будем говорить, что ряд (1) сход-ся в т. xо (xо-точка сход-ти ряда)

Множество всех точек сход-ти ряда(1) назовём областью сход-ти рядом

Опред: (1) наз-ся правильно сход-ся на [a,b], если для любого n выполнено нер-во Un(x) <=an для любогоxc[a,b], n=1Σan – сх-ся

Сва-ва правильно сход-ся рядов:

1) Если ряд (1) прав сход-ся на отрезке [a,b], то (1) абсолютно сход-ся для любого хоc[a,b]

2) Если ряд (1) прав сход-ся на отрезке [a,b] и его члены Un(x) – непрер на [a,b] => S(x)= n=1Σ Un(x) - непрер на [a,b]

3) Если ряд (1) прав сход-ся на отрезке [a,b], Un(x) - непрер на [a,b], то

ab S(x)dx= n=1Σ( ab Un(x)dx)

В этом случае говорят, что ряд можно почленно интегрировать.

4) (1) сход-ся на [a,b]. S(x), Un(x) – непрер диффир на интервале (a,b), n=1Σ Un’(x) – прав сход-ся на (a,b). Тогда существует S’(x)= n=1Σ Un’(x)(т.е возможно почленное диффир ряда) при чём S’(x) непрер на (a,b).

Степенные ряды, теорема Коши-Адамара (без д-ва), Пример. Теорема о правильной сходимости степенного ряда (док).

6) Определение: n=1ΣCn(x-a)n = Co +C1(x-a)+ C2(x-a)2+…+ Cn(x-a)n+…(1) – называется степенным рядом ac R, Cn c R-коэффициентами степенного ряда Теорема Коши - Адамара: Для каждого степенного ряда (1) существует R с [0, ∞],что выполнено 2 условия:

7) 1)Если |x-a| <R => (1)абсолютно сход-ся

8) 2) Если |x-a| >R => (1)расходится

9) Если существует limn→∞ n√ |an|=l,то R=1/l {l= limn→∞|(an+1)/an|}

10) Теорема о правильной сходимости степенного ряда:

11) R>0=>для любого фиксированного r:0<r<R,ряд правильно сх-ся на [a-r;a+r]

 

17. Непрерывность суммы степенного ряда, почленное интегрирование и диффе-
ренцирование степенного ряда (док)
..

S’(x)= n=1Σ∞(Cn(x-a)n)’= n=1ΣnCn(x-a)n-1 почленное диффир

R>0=>S(x) непрерывна в (а-R,а+R)

Док-во:сущест rc(0,R);x0c(a-r,a+r) и ряд правильно сходится на (a-r,a+r)=>S(x) непрер на (a-r,a+r),где S(x) непрер в R=>S(x) непрер в x0=>S(x) непрерывна







Дата добавления: 2015-08-27; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия