Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дыхательная функция крови





 

Кислород (О2) в организме может быть в двух состояниях: растворенном в водных средах и связанным с носителем его — гемоглобином. Для того, чтобы понять процессы переноса газов кровью от легких к тканям и обратно, необходимо рассмотреть вопрос о парциальных давлениях (напряжениях) газов и, в частности, кислорода. Парциальное давление О2 в воздухе при нормальном атмосферном давлении 760 мм рт. ст. равно 159 мм рт. ст., т. е. на долю О2 приходится примерно 1/5 давления, создаваемого всеми газами, содержащимися в воздухе. Поскольку в альвеолярном воздухе доля О2 уменьшается за счет повышения в нем количества углекислоты и водяных паров и составляет примерно 14%, парциальное давление его в альвеолах равно 100—108 мм рт. ст. Термин «парциальное давление» применим лишь к смеси газов. Согласно закону Генри, растворимость идеальных газов в воде прямо пропорциональна их парциальному давлению над уровнем воды.

Общая схема диффузии и изменения парциального давления О2 в различных средах организма показаны нарис.17.12. Как следует из этого рисунка, в альвеоле рО2 снижается со 150 до 104 мм рт. ст. благодаря наличию выделяющейся углекислоты. Кислород диффундирует через альвеоло-капиллярную мембрану в плазму, и его напряжение в плазме повышается с 40 до 100 мм рт. ст. (см. 17.12). В тканях О2 в силу разности парциальных давлений проникает в клетку (также путем диффузии), где участвует в процессах метаболизма.

Рис. 17.12. Схема диффузии кислорода: а – науровне альвеолокапиллярной мембраны, б — на уровне клетки

 

Коэффициент растворимости О2 в плазме при температуре 37°С и парциальном давлении О2 в крови 100 мм рт. ст. составляет всего 0,3 об. %. Это означает, что каждые 100 мл нормальной крови могут переносить в растворенном состоянии всего 0,3 мл кислорода. Таким образом, в плазме, если принять, что объем циркулирующей крови равен 5 л (около 2 л эритроцитов и 3 л плазмы), может содержаться при указанных условиях в растворенном состоянии 0,3 мл • 30 = 9 мл кислорода. Этого явно недостаточно для поддержания жизнедеятельности организма. Вместе с тем в соответствии с законом Генри, количество растворенного в плазме О2 можно увеличить, если повысить парциальное напряжение его во вдыхаемом воздухе. При этом коэффициент растворимости будет увеличиваться на 0,003 об. % при повышении парциального давления О2 на каждый 1 мм рт. ст. Следовательно, если здоровый человек дышит чистым О2 при нормальном атмосферном давлении 760 мм рт. ст., то количество растворенного в его плазме кислорода (при ОЦК 5 л) составляет:

(660[5] • 0,003 • 30) мл + 9 мл = 59,4 мл + 9 мл = 68,4 мл.

 

Если поместить человека в кислородную среду барокамеры и повысить давление до 3 абсолютных атмосфер (что составит парциальное давление кислорода 760 • 3 = 2280 мм рт. ст.), то количество растворенного в его плазме О2 возрастает до (68,4 • 3) мл = 205,2 мл. Этим же законам подчиняются и напряжение (парциальное давление), и растворимость О2 в интерстициальной и внутриклеточной жидкости организма.

В организме перенос О2 осуществляет гемоглобин, который способен быстро и обратимо присоединять О2 с образованием лабильного соединения оксигемоглобина, согласно обратимой реакции типа Нb + 4О2 ↔ Нb(О2) 4 или, точнее, Нb + О2 ↔НbО2, поскольку в молекуле гемоглобина содержится 4 молекулы гема, каждая из которых присоединяет по одной молекуле кислорода. Гемоглобин присоединяет О2 в среде с высоким парциальным давлением О2 и отщепляет его в среде с низким парциальным давлением. Если предположить, что весь гемоглобин находится в состоянии оксигемоглобина, т. е. на 100% насыщен О2, то легко рассчитать, какое количество О2 несет на себе гемоглобин в целом.

Известно, что одна грамм-молекула гемоглобина соединяется с грамм-молекулой кислорода, т. е.

Согласно закону Авогадро, одна грамм-молекула любого газа при стандартных условиях занимает объем 22,4 л, следовательно:

т. е. 1 г гемоглобина может присоединить к себе максимально 1,39 мл кислорода (так называемая константа Гюфнера). Так как нормальное содержание гемоглобина в крови составляет 145—150 г/л, то 100 мл крови могут перенести максимально около 19—21 мл О2 (кислородная емкость крови), а 5 л крови могут максимально содержать около 1000 мл кислорода.

Как видно из табл. 17.5, на всем протяжении сложного пути О2 от альвеол до тканей происходит постепенное падение парциального давления. Разность парциальных давлений газов в средах, разделенных проницаемыми мембранами (альвеолы, капилляры) является основным фактором, обусловливающим переход О2 и СО2 из одной среды в другую (табл. 17.6).

Таблица 17.5







Дата добавления: 2015-08-27; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия