Основные виды конструкционных Пластмасс, их свойства и области применения
В строительстве наибольшее применение нашли стеклопластики и древесные пластики. Стеклоплас тики пред-ставляют собой пластмассы, состоящие из стеклянного наполнителя и связующего. В качестве последнего используют обычно ненасыщенные полиэфирные, эпоксидные и фенолоформальдегидные смолы, а также некоторые термопласты. Наполнители в настоящее время используются главным образом стекловолокнистые, свойствами которых во многом определяются физико-механические характеристики стеклопластиков. Стеклянное волокно является для стеклопластика своеобразной арматурой подобно металлу в железобетоне. Смола выполняет роль связующего и в то же время защищает стеклянные волокна от влияния внешней среды и способствует равномерному распределению усилий, возникающих в них, По химическому составу стекло, из которого вырабатывают волокна, может быть щелочным с содержанием окиси натрия 5—15 % и малощелочным с меньшим его содержанием. Прочность щелочного стекловолокна ниже прочности малощелочного и в значительно большей степени снижается прилувлажнении. В связи с этим для изготовления стеклопластиков применяют малощелочное стекловолокно. Стекловолокно получают следующим образом (рис. 1.22). Расплавленная в печи стеклянная ыасса, проходя через фильерные отверстия на дне печи, образует капли, которые увлекают за собой тонкие волокна; Затем эти волокна наматываются на вращающийся барабан. Во время выработки стеклянные волокна следует замасливать — наносить на их поверхность смеси органических или элементоорганических веществ из расплава, раствора или эмульсии (рис. 1.22). Однако замасли-ватели значительно снижают адгезию связующего к стеклянному волокну, поэтому в дальнейшем за мае ли-ватель со стекловолокна (если это необходимо) удаляют и наносят новое покрытие — аппрет, которое способствует лучшему совмещению стекла и связующего. Применяют три вида замасливателей — парафиновый, парафиновую эмульсию и спиртоканифольный. В качестве аппретирующих веществ используют главным образом органосилановые со,единения. Стеклянное волокно имеет все положительные качества, присущее стеклу — негорючесть, высокую теплостойкость, плотность, прозрачности, а также хорошие механические показатели. Так, прочность малощёлбчнр-№ волокна диаметром 6 мк превышает 2 ГПа, а модель Упругости достигает 70 ГПа. Непрерывные волокна, получаемые из расплава массивного стекла, приобретают новые качества, наиболее важные из которых гибкость и высокая прочность при растяжении. Первичные стеклянные нити получают непосредственно при выработке непрерывного волокна. Их применяют в основном для изготовления пресс-материалов, вырабатываемых на тех же предприятиях, где производится стекловолокно, так как транспортирование первичных нитей затруднено. На основе первичных нитей производят пресс-материалы типа АГ-4С (ЛОС, АГ-4нС), а также СВАМ (в последнем случае выработка первичной нити совмещается с получением композиционного материала). Первичные нити служат исходным сырьем для получения также крученых нитей, стекложгутов и стеклохолстов (стеклом атов). Тканые стекловолокнистые материалы благодаря их хорошим технологическим свойствам широко используются в производстве изделий из стеклопластиков. Композиции на основе стеклотканей и связующих называются стеклотекстолитами. Пресс-материалы. Принцип получения стеклопласти-кового пресс-материала состоит в совмещении различными способами связующего и стекловолокнистого наполнителя, в результате чего образуется композиция, удобная для дальнейшей переработки в изделие методом прямого или литьевого прессования. Пресс-материалы типа СВАМ. СтекловолокнИстый анизотропный материал (СВАМ), являющийся одним из первых отечественных стеклопластиков, получают непосредственно при выработке первичной стеклонити, применяя связующее в качестве замасливателя. Стеклоплавильное устройство с фильерной пластиной совершает возвратно-поступательное движение вдоль оси приемного устройства — барабана диаметром 1 м, длиной 3 м, на который наматываются нити (рис. 1.23). После намотки определенного числа слоев пропитанной нити однонаправленный материал срезают. В развертке он представляет собой квадратный лист размером 3X3 м2. Повернув лист на 90° относительно оси барабана и вновь его закрепив, также наматывают необходимое число слоев пропитанной нити. Таким образом получается стеклошпон с взаимно перпендикулярным расположением волокон. После сушки до определенного содержания летучих веществ стеклошпон перерабатывают в изделия методом прямого прессования. Пресс-материалы типа АГ-4С представляют собой однонаправленную ленту, получаемую на основе крученых стеклянных нитей и анилино-фенолоформальдегид-ной смолы, модифицированной бутваром (Р-2М). Определенное число крученых стеклонитей сматывается со шпуль, установленных на шпулярнике, и, сближаясь, формируется в ленту, которая направляется в пропиточную ванну. Затем она попадает в сушильное устройство и после удаления растворителя наматывается в рулоны на приемном устройстве (рис. 1.24). В последние годы начали выпускать пресс-материал типа АГ-4нС, отличающийся от материала АГ-4С видом наполнителя. В качестве наполнителя здесь используют первичные стеклянные нити номера 22—24 м/г (диаметр элементарного волокна 9—11 мк). Физико-механические свойства пресс-материала типа АГ-4нС несколько выше, чем у материала типа АГ-4С; кроме того, он дешевле последнего. В отличие от пресс-материалов типа АГ-4С на основе крученых нитей ленточные пресс-материалы на основе первичных нитей иногда называют ЛОС (лента однонаправленная стеклянная). Пресс-материалы типа АГ-4С предназначены для получения высокопрочных изделий методом прямого прессования или намотки. Пресс-материалы типа АГ-4В представляют собой стекловолокнит, получаемый на основе срезов первичной стеклонити и смолы Р-2М. Специально подготовленный стекловолокнистый наполнитель смешивают с фенолоформальдегидной смолой в смесителях. Затем полученный продукт выгружают и сушат. Пресс-материал типа АГ-4В поставляют в виде волокнистой массы или в таблетированном виде. Подобным образом готовят во-локниты других типов на основе различных связующих. Режимы прессования определяют заранее в зависимости от вида и толщины изделия. Для обычных или модифицированных фёнолофор-мальдегидных смол давление прессования должно составлять не менее 10 МПа, максимальная температура прессования 140—150°С, продолжительность выдержки 3—4 мин на 1 мм толщины получаемого изделия. Отечественный и зарубежный опыт показывает, что использование стеклопластиков в строительстве имеет немало технико-экономических преимуществ, благодаря которым они используются в строительстве главным образом в виде ограждающих конструкций (стеновые и кровельные панели), несущих строительных конструкций, архитектурно-строительных деталей и изделий, са-нитарно-технических изделий, декоративно-облицовочных материалов, арматуры и опалубки для бетонных конструкций. В качестве ограждающих конструкций из листовых стеклопластиков наибольшее применение нашли плоские и волнистые полиэфирные стеклопластики, бесцветные или окрашенные в различные цвета. Такие материалы используются в большинстве случаев для покрытия промышленных зданий и сооружений. Большое распространение в промышленном строительстве индустриальных районов, где такие материалы, как листовая сталь или асбестоцементные листы, быстро подвергаются коррозии и разрушаются вследствие влияния агрессивных газов, получают кровельные стек-лопластиковые материалы. У нас в стране в настоящее время выпускают гладкие и волнистые листы из стеклопластиков на основе смолы ПН-1. Эти материалы имеют удовлетворительные физико-механические свойства, небольшой объемный вес, светопрозрачность и хороший внешний вид. Их используют для устройства световых фонарей, покрытий промышленных и общественных зданий (летних павильонов, кафе и т.д.), навесов, балконных ограждений, стеновых панелей и перегородок. Плоские и волнистые листы из стеклопластиков (непрозрачные и прозрачные) целесообразно применять при строительстве взрывоопасных помещений, а также зданий и сооружений, расположенных в сейсмических районах. Такие синтетические материалы при разрушении не дают осколков и имеют небольшую массу по сравнению с другими строительными материалами. Стеклопластики на полиэфирных смолах применяют для стеновых и кровельных панелей неотапливаемых зданий, трехслойных панелей, различных профильных изделий, а также в качестве защитного покрытия железобетонных конструкций, подвергающихся воздействию агрессивных сред, а также периодическим замораживанию и оттаиванию, например градирен. Защитное покрытие в этом случае наносят на поверхность элементов методом контактного формования или напылением. Долговечность железобетонных конструкций с защитным покрытием увеличивается в несколько раз. Волнистый стеклопластик на полиэфирных смолах нашел широкое применение в нашей стране в качестве обшивки башенных и вентиляторных градирен. В строительстве промышленных, общественных и сельскохозяйственных зданий и сооружений прозрачные листовые кровельные материалы из стеклопластиков в сочетании с другими кровельными и стеновыми материалами используются для устройства отдельных прозрачных участков кровли И1 стен. Благодаря применению прозрачных стеклопластиков стало возможным значительно упростить конструкцию фонарей многопролетных промышленных зданий. Погонажные элементы, изготовленные из стеклопластика типа АГ-4С, могут найти применение в конструкциях ферм, прогонов, решетчатых стоек и т.д. Технология изготовления этих изделий, разработанная в МИСИ им. В. В. Куйбышева, позволяет получать на прессах погонажные изделия практически любого поперечного сечения и любой длины. Несущие конструкции, изготовленные из таких профилей, целесообразно применять в сооружениях, которые подвержены действию агрессивных сред, а также «в радиопрозрачных», немагнитных, электроизоляционных и других сооружениях специального назначения. Практическая возможность применения несущих конструкций из пластмасс в различных областях строительства подтверждена многочисленными примерами осуществленных сооружений во многих странах мира. Наиболее эффективными конструкциями из пластмасс являются пространственные конструкции в виде оболочек покрытия, в которых благодаря рациональной геометрической форме в значительной степени компенсируется такой недостаток пластмасс, как повышенная деформативность вследствие относительно низкого модуля упругости. В оболочках покрытий благодаря совмещению несущих и ограждающих функций материал используется как правило более выгодно, чем в плоских конструкциях. В пространственных конструкциях при одних и тех же пролетах возникают значительно меньшие изгибающие моменты, чем в плоских. Относительный недостаток пространственных конструкций — их более сложный монтаж, особенно конструкций, состоящих из криволинейных элементов. Из пластмасс, используемых для изготовления пространственных конструкций, преимущественное распространение получили стеклопластики и пенопласты. 8. Предел прочности древесины при растяжении вдоль волокон в стандартных чистых образцах (влажностью 12%) высок — для сосны и ели он в среднем 100 МПа. Модуль упругости 11—14 ГПа. Наличие сучков и при-сучкового косослоя значительно снижает сопротивление растяжению. Особенно опасны сучки на кромках с выходом на ребро. Опыты показывают, что при размере сучков 'А стороны элемента предел прочности составляет всего 0,27 предела прочности стандартных образцов. Отсюда видно, насколько важен правильный отбор древесины по размерам сучков для растянутых элементов конструкций. При ослаблении деревянных элементов отверстиями и врезками их прочность снижается больше, чем получается при расчете по площади нетто. Здесь сказывается отрицательное влияние концентрации напряжений у мест ослаблений. Опыты показывают также, что прочность при растяжении зависит от размера образца; прочность крупных образцов в результате большей неоднородности их строения меньше, чем мелких. При разрыве поперек волокон вследствие анизотропности строения древесины предел прочности в 12— 17 раз меньше, чем при растяжении вдоль волокон. Следствием этого является большое влияние косослоя, при котором направление усилия не совпадает с направлением волокон. Чем значительнее косослой, тем больше составляющая усилия, перпендикулярная волокнам, и тем меньше прочность элемента. Косослой — второй по значимости порок," величина которого в растянутых элементах должна строго ограничиваться. Диаграмма работы сосны на растяжение (рис. 1.11), в которой по оси абсцисс откладывается относительная деформация е, а по оси ординат относительное напряжение ф, выраженное в долях от предела прочности (так называемая приведенная диаграмма), при ф=0,5 имеет незначительную кривизну и в расчетах может приниматься прямолинейной. Значение ф = 0,5 рассматривается при этом как предел пропорциональности. Испытания стандартных образцов на сжатие вдоль волокон дают значения предела прочности в 2—2,5 раза меньшие, чем при растяжении. Для сосны и ели при влажности 12% предел прочности на сжатие в среднем 40 МПа, а модуль упругости примерно такой же, как при растяжении. Влияние пороков (сучков) меньше, чем при растяжении. При размере сучков, составляющих '/з стороны сжатого элемента, прочность при сжатии будет 0,6—0,7 прочности элемента тех же размеров, но без сучков. Кроме того, в деревянных конструкциях размеры сжатых элементов обычно назначаются из расчёта на продольный изгиб, т. е. при пониженном напряжении, а не из расчета на прочность. Благодаря указанным особенностям работа сжатых элементов в конструкциях более надежна, чем растянутых. Этим объясняется широкое применение металлодеревянных конструкций, имеющих основные растянутые элементы из стали, а сжатые и сжато-изгибаемые из дерева. Приведенная диаграмма сжатия (см. рис. 1.11) при oi>0,5 более криволинейна, чем при растяжении. При меньших значениях <ф криволинейность ее невелика и она может быть принята прямолинейной до условного предела пропорциональности, равного 0,5. Разрушение сопровождается появлением характерной складки (рис. 1.12), образуемой местным изломом волокон. При поперечном изгибе значение предела прочности занимает промежуточное положение между прочностью на сжатие и растяжение. Для стандартных образцов из сосны и ели при влажности 12 % предел прочности при изгибе в среднем 75 МПа. Модуль упругости примерно такой же, как при сжатии и растяжении. Поскольку при изгибе имеется растянутая зона, то влияние сучков и косослоя значительно. При размере сучков в 7з стороны сечения элемента предел прочности составляет 0,5—0,45 прочности бессучковых образцов. В брусьях и особенно в бревнах это отношение выше и доходит до 0,6—0,8. Влияние пороков в бревнах при работе на изгиб вообще меньше, чем в пиломатериалах, так как в бревнах отсутствует наблюдаемый в пиломатериалах выход на кромку перерезанных при распиловке волокон и отщепление их в присучковом косослое при изгибе элемента. Определение краевого напряжения при нзгибе по обычной формуле a=M/W соответствует линейному распределению напряжений по высоте сечения и действительно в пределах небольших напряжений (рис. 1.13). При дальнейшем росте нагрузки и увеличении кривизны эпюра сжимающих напряжений в соответствии с диаграммой работы на сжатие (рис. 1.11, кривая б) принимает криволинейный характер (рис. 1.13,6, в). Одновременно нейтральная ось сдвигается в сторону растянутой кромки сечения. При этом фактическое краевое напряжение сжатия меньше, а напряжение растяжения больше вычисленных по формуле. Определение предела прочности по формуле a=M/W удобно для сравнительной оценки прочности различной древесины. В стадии разрушения сначала в сжатой зоне образуется складка, затем в растянутой зоне происходит разрыв наружных волокон. Разрушение клеток в сжатой и растянутой зонах аналогично разрушению при осевом сжатии и растяжении. Опыты и теоретические исследования показывают, что условный предел прочности при изгибе зависит от формы поперечного сечения. При одном и том же моменте сопротивления у круглого сечения он больше, чем у прямоугольного, а у двутаврового сечения меньше, чем у прямоугольного. С увеличением высоты сечения предел прочности снижается. Все эти факторы учитываются в расчете введением соответствующих коэффициентов: к расчетным сопротивлениям.
|