Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сжато-изгибаемые элементы





Сжато-изгибаемыми элементами называются такие, на которые действует изгибающий момент и централь­но приложенное продольное сжимающее усилие. Изги­бающий момент может создаваться: а) внецентренно приложенной сжимающей силой и тогда элемент назы­вают внецентренно сжатым или б) поперечной нагруз­кой. При расчете сжато-изгибаемых деревянных стерж­ней применяют теорию краевых напряжений, предложен­ную проф. д-ром техн. наук К. С. Завриевым. В соответст­вии с этой теорией несущая способность стержня счита­ется исчерпанной в тот момент, когда краевое напряжение сжатию делается равным расчетному сопротивлению.

Эта теория менее точная, чем теория устойчивости, однако она дает более простое решение и поэтому при­нята в действующих нормах проектирования СНиП П-25-80.

Так как жесткость стержня не является бесконечной, то он под влиянием изгибающего момента прогибается.

При этом центрально приложенная сжимающая сила теперь уже будет иметь эксцентриситет, равный дефор­мации стержня от момента, и таким образом создаст дополнительный момент (рис. II 1.8). Появление допол­нительного момента от нормальной силы увеличит де­формацию стержня, что приведет к еще большему воз­растанию дополнительного момента. Такое наращивание дополнительного момента и прогибов будет некоторое время продолжаться, но затем затухнет.

Полный прогиб стержня и уравнение кривой неизве­стно, поэтому непосредственно по формуле краевых на­пряжений нельзя найти эти напряжения:

Так как в двух написанных уравнениях есть три неиз­вестных Ос, у, Мх, то следует найти еще одно уравнение. Всякую кривую можно аналитически выразить в виде ряда, который при этом должен быть быстро сходящим­ся и удовлетворять краевым значениям. Таким является тригонометрический ряд

Геометрическая интерпретация ряда показана на рис. Ш.9. Как видно, /v есть максимальная ордината кривой каждого члена ряда.

При симметричной нагрузке первый член ряда дает точность, равную 95—97 %. Для упрощения решения бу­дем считать нагрузку симметричной. Тогда можно огра­ничиться только первым членом ряда.

Однако третье уравнение принесло четвертое неизвест­ное fi. Поэтому вспомним строительную механику, где было показано, что вторая производная у" уравнения кривой деформирования равна изгибающему моменту, деленному на жесткость с обратным знаком, т. е.

d *yldx* = — MJEJ. (Ill. 30)

Тогда после дифференцирования уравнения кривой по­лучим

Приравняв значения (Ш.31) и (Ш.ЗО) получим

Теперь значение Мх из (III.32) и у из (111.29) под­ставим в выражение (111.28) и после преобразования, имея в виду, что n2EJ/l2=NKP, a sin (я*//) при х=//2, где при симметричной нагрузке будет находиться мак­симальная ордината прогиба ymax=/i, равен единице, получим, что

Найденная зависимость позволяет решить вопрос об определении напряжений. Для этого /значение /i=#max из (Ш.ЗЗ) надо подставить в выражение (111.27):

сс = NIF + MqIW + NMq/(NKP — N)W. (III. 34)

 








Дата добавления: 2015-08-27; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия