Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет сжато-изгибаемых элементов





Метод расчета сжато-изгибаемых элементов состав- ^ ного сечения на податливых связях остается таким же, как и элементов цельного сечения, но в формулах допол­нительно учитывается податливость связей.

При расчете в плоскости изгиба составной элемент испытывает^сложное сопротивление и податливость свя-. зей учитывают дважды:

1) введением коэффициента km такого же как при расчете составных элементов на поперечный изгиб;

2) вычислением коэффициента g с учетом приведен­ной гибкости элемента.

Нормальные напряжения определяют по формуле

При вычислении коэффициента ц по формуле (V.6) податливость связей k0 определяют по таблице (графа «сжатие с изгибом»), При определении количества связей, которое надо поставить на участке от опоры до сечения с максималь­ным моментом, учитывают возрастание поперечной силы при сжато-изгибаемом элементе

пс =1,5 MmaxSIJTcl. (V.15)

В стержнях с короткими прокладками помимо обще­го расчета стержня необходима еще проверка наиболее напряженных ветвей как сжато-изгибаемых стержней по формуле

где фв — коэффициент продольного изгиба для отдельной ветви, вы­численной по ее расчетной длине /<,; F^p, Wop — площадь и момент сопротивления (брутто) поперечного сечения всего стержня; Мд= — Мд/% — изгибающий момент от нагрузок, определяемый из расчета по деформированной схеме.

Сжато-изгибаемые элементы рассчитывают из плос­кости изгиба приближенно без учета изгибающего мо­мента, т.е. как центрально-сжатые составные стержни и, кроме того, проверяют на устойчивость плоской фор­мы деформирования по формуле (111.39).

 

19. § 2.2. Лобовая врубка

Врубкой называют соединение (рис. IV.7), в котором усилие элемента, работающего на сжатие, передается другому элементу непосредственно без вкладышей или иных рабочих связей. За этим видом соединения сохра­нилось старое название «врубка», хотя в настоящее ' время врезки и гнезда выполняют не топором, а электро-или мотопилой, цепнодолбежником и т. п.

Основной областью применения врубок являются уз­ловые соединения в брусчатых и бревенчатых фермах, в том числе в опорных узлах примыкания сжатого верхне­го пояса к растянутому нижнему поясу.

Соединяемые врубкой элементы деревянных конст­рукций (д. к.) должны быть скреплены вспомогательны­ми связями — болтами, хомутами, скобами и т. п., кото­рые следует рассчитывать в основном на монтажные на­грузки. Лобовая врубка может утратить несущую способ­ность при достижении одного из трех предельных состо­яний: I) по смятию площадки упора FCMci 2) по скалы­ванию площадки FCK; 3) по разрыву ослабленного вруб­кой нижнего пояса.

Площадь смятия определяют глубиной врубки hBP, которая ограничивается нормами Лвр^йбр/3, где Лбр— высота растянутого элемента. При этом несущая способ­ность врубки из условия разрыва растянутого элемента в ослабленном сечении при правильном центрировании узла всегда обеспечивается с избыточным запасом проч­ности. Решающее значение имеет как правило несущая способность врубки, исходя из условий скалывания.

Согласно СНиП П-25-80, лобовую врубку на скалы­вание рассчитывают определением среднего по длине площадки скалывания напряжения сдвига по формуле

где Rck — расчетное сопротивление древесины скалыванию для мак­симального напряжения; /Ск — расчетная длина плоскости скалыва­ния, принимается не более 10 глубин врезки в элемент; е — плечо сил сдвига, принимаемое 0,5/г при расчете элементов с несимметрич­ной врезкой в соединениях без зазора между элементами (см. рис. IV.7) и 0,25Л при расчете симметрично загружаемых элементов с симметричной врезкой; {5 — коэффициент, приншйаемый 0,25. Отно­шение /ск/е должно быть не менее 3.

Однако выполненный анализ сложного напряженного состояния, возникающего по плоскости скалывания1, по­казал, что вышеприведенная формула СНиП П-25-80 приемлема только для угла а=45°. А для угла а=30°, при котором несущая способность врубки повышается, формула СНиП не верна и должна быть заменена дру­гой:

В результате анализа установлено, что с увеличением глубины врубки Лвр при постоянной длине плоскости* скалывания /ск снижается коэффициент концентрации напряжений сдвига и уменьшаются напряжения сжатия поперек волокон в начале плоскости скалывания. Выяв­лена зависимость коэффициента концентрации напряже-

1 Федоров В. В. Исследование работы бесшарнирного узлового сопряжения клеефанерных косяков кружально-сетчатого свода. Дисс. на соиск. ученой степени канд, техн, наук 1980 г. МИСИ им. В. В, Куйбышева,

ний сдвига tmnx/tcpen от отношения /ск/е и от угла смятия а (табл. IV.2). На основе данных, приведенных в табл. IV. 1, можно сделать следующие выводы:

1) чем больше отношение длины плоскости скалыва­ния к е, тем больше коэффициент концентрации напря­жений сдвига;

2) чем меньше угол а, тем меньше коэффициент кон­центрации напряжений сдвига;

3) чем больше нормальная к плоскости сдвига со­ставляющая, тем выше значение концентрации напряже­ний сдвига.

При этом необходимо отметить, что нормальные к плоскости сдвига напряжения сжатия поперек волокон повышают сопротивление скалыванию вдоль волокон1.

 

20. § 3.1. Соединения на шпонках и шайбах шпоночного типа

Шпонки — это вкладыши из твердых пород древеси­ны, стали или из пластмасс, которые устанавливаются между сплачиваемыми элементами и препятствуют сдвигу. Для сплачивания деревянных элементов издавна применялись призматические шпонки из твердых пород древесины. Различают призматические деревянные про­дольные шпонки (рис. IV.11,а), когда направления во­локон древесины шпонок и соединяемых элементов со­впадают, и поперечные, когда направление волокон в шпонках перпендикулярно к направлению волокон сое­диняемых элементов. Во втором случае для обеспечения более плотной посадки шпонок они могут быть выполне­ны из двух клиновидных элементов.

Призматические шпонки, передавая от одного элемен­та другому сдвигающие силы, работают на смятие и ска­лывание. По надежности из деревянных призматических шпонок следует выделить наклонные шпонки. Отличи­тельный признак шпонок — появление опрокидывающего шпонку момента и как результат этого возникновение распора между соединяемыми элементами (рис. IV. 11, б). Рассмотрев равновесие шпонки без учета сил трения, можно приближенно определить распор

Для восприятия распора необходимо устанавливать ра­бочие связи — стяжные болты. Во избежание чрезмерной деформативности шпоночных соединений, а также для уменьшения количества стяжных болтов, длину шпонки по нормам принимают не менее /Шп>5hВр. Глубину врез­ки шпонок в брусья следует принимать не менее 2 см и не более Vs высоты бруса, а бревна — не менее 3 см и не более V* диаметра бревна.

Расчет соединений на призматических шпонках подобно расчету соедине­ний на лобовых врубках сводится к проверке несу­щей способности по смя­тию и скалыванию древе­сины шпонок, а также сплачиваемых брусьев или бревен. При расчете на скалывание в многорядовых соединениях в связи с вероятностью неравномерного распределения усилий между шпонками и снижения не­сущей способности вводят коэффициент 0,7. При расчете соединений на шпонках требуется подбор стяжных бол­тов и шайб под его головку и под гайку для восприятия распора.

В настоящее время в зарубежной практике строительст­ва нашли широкое применение тавровые металлические шпонки (рис. IV.11,в). Они занимают промежуточ­ное положение между шпонками и пластинчатыми наге­лями. Несомненным их преимуществом является просто­та сборки, упрощенное изготовление гнезда небольшого размера и возможность в связи с этим расположения большего количества шпонок без снижения несущей спо­собности деревянных элементов на скалывание.

Для соединения элементов деревянных конструкций под различными углами в узлах ставят круглые центро­вые шпонки. Характерная особенность всех центровых шпонок — наличие в центре отверстия для стяжного бол­та. Отверстие для этого болта в соединяемом элементе можно использовать при нарезке круглых или кольцевых гнезд в каждом элементе порознь. На рис. IV. 12. показа­но развитие центровых шпонок и их переход к шайбам шпоночного типа. Центровые односторонние шайбы шпоночного типа воспринимают усилия от центрального бол­та и рассредоточенно передают их на деревянный эле­мент.

В определенный период времени наблюдался спад ин­тереса к применению шпонок. Это объяснялось главным образом тем, что при их применении для соединения де­ревянных элементов цельного сечения, из-за устройства гнезд под шпонки сильно ослаблялось поперечное сече­ние. Появление клееных деревянных элементов расшири­ло возможности применения и создания большепролет­ных деревянных конструкций. Одновременно с этим воз­никла необходимость устройства соединения клееных элементов для увеличения их длины, а нередко попереч­ного сечения, так как при больших пролетах бывает эко­номичнее делать сечение из нескольких клееных элемен­тов, соединенных между собой на механических связях. При этом ослабление поперечного сечения в соединениях клееных элементов составляет не столь ощутимую долю от всего поперечного сечения.

Наибольшее распространение в современных деревян­ных клееных конструкциях за рубежом нашли шайбы шпоночного и нагельного типов.

Из центровых шайб наиболее технологичными и на­дежными для сборных узловых соединений элементов деревянных конструкций являются зубчатые и когтевые шпонки. Они получаются из листовой стали штамповкой на специальных прессах. Зубчатые шпонки могут иметь зубья или когти с одной или двух сторон. Односторонние зубчатые шпонки применяют обычно для устройства сборно-разборных соединений или для прикрепления де- ревянных элементов к металлическим. В нашей стране проф. В. Г. Ленновым были предложены штампованные когтевые шайбы (рис. IV.13,а). Этот тип зубчатых шпо­нок нашел применение и дальнейшее развитие в зару­бежной практике строительства.

Соединения на зубчатых шпонках характеризуются высокой несущей способностью и вязкостью. Зубчатые шпонки вдавливают в тело древесины ударным способом или специальными зажимами. К недостаткам соединений на зубчатых шпонках относится образование трещин в сопрягаемых элементах, а также уменьшение несущей способности из-за неравномерности запрессовки шпонок в многорядовых соединениях. Вследствие этого количест­во зубчатых шпонок в одном ряду ограничивается де­сятью.

Основные формы и виды шайб шпоночного типа со­временных деревянных конструкций показаны на рис. IV. 13. В табл. IV.3 даны их основные характеристики. При сплачивании клееных деревянных элементов с по­мощью шайб шпоночного типа они могут иметь прямую расстановку или располагаться в шахматном порядке с шагом пропорционально диаметру шпонок (см. табл. IV.3).

Металлические шпонки, расположенные внутри дере­вянных элементов, не требуют в обычных условиях анти­коррозионной защиты. При использовании шпоночных соединений в условиях повышенной химической агрессив­ности окружающей среды применяют антикоррозионное покрытие металлических шпонок, чаще оцинкование,

 

 








Дата добавления: 2015-08-27; просмотров: 1467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия