Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие теоретические сведения об ИП температуры. 1. Автоматизация измерений, контроля и испытаний : учебное пособие / С.В


 

1. Автоматизация измерений, контроля и испытаний: учебное пособие / С.В. Мищенко, А.Г. Дивин, В.М. Жилкин, С.В. Пономарев, А.Д. Свириденко. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2007. – 116 с. – 100 экз. – ISBN 5-8265-0604- 0 (978-5-8265-0604-2).

2. Е. С. Левшина, П. В. Новицкий, Электрические измерения физических величин. Измерительные преобразователи. – М.: Энергоатомиздат, 1983, с. 320.

3. Е. С. Полищук. Измерительные преобразователи. – Киев: Высш. Школа, 1981, с. 293.

4. LabVIEWTM Вводный курс. National Instruments Corporation.

5. Евдокимов Ю. К., Линдваль В. Р., Щербаков Г. И. LabVIEW для радиоинженера: от виртуальной модели до реального прибо­ра. Практическое руководство для работы в программной среде LabVIEW. - М.: ДМК Пресс, 2007. - 400 с.

6. Тревис Дж. LabVIEW для всех / Джеффри Тревис: Пер. с англ. Клушин Н. А. - М.: ДМК Пресс; ПриборКомплект, 2005. - 544 с.: ил.

7. Батоврин В.К., Бессонов А.С., Мошкин В. В., Папуловский В. Ф. LabVlEW: Практикум по основам измерительных технологий: Учебное пособие для вузов. - М.: ДМК Пресс, 2005. - 208 с: ил.

8. Н.А.Виноградова, Я.И.Листратов, Е.В.Свиридов Разработка прикладного программного обеспечения в среде LabVIEW: Учебное пособие – М.: Издательство МЭИ, 2005.

9. Суранов А. Я. LabVIEW 7: Справочник по функциям. - М.: ДМК Пресс, 2005. - 512 с.

 

Задание на лабораторную работу обсуждено и одобрено на заседании кафедры МИИТ.

Протокол № ____ от «____» __________ 200 г.

 

Руководитель занятия

старший преподаватель кафедры МИИТ Конопля В.И.

ЗАДАНИЕ

На лабораторную работу № 1-Vi

по дисциплине «Измерительные преобразователи»

Класс _________________ Дата и время ___________________

Место проведения:

 

Тема: ИССЛЕДОВАНИЕ СВОЙСТВ ТЕПЛОВЫХ РЕЗИСТИВНЫХ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Учебные цели:

1. Изучить принцип действия резистивных измерительных преобразователей, их разновидности, свойства.

2. Исследовать характеристики различных ИП и способы их линеаризации

3. Исследовать измерительные схемы включения ИП их особенности, достоинства, недостатки.

4. Получить практические навыки измерения температуры различными ИП, научиться проводить анализ и обработку результатов измерения.

 

Описание лабораторной установки

Лабораторная установка включает в себя в себя рабочий экран виртуального прибора с набором виртуальных измерительных преобразователей и схем включения.

В корпусе вмонтирована камера термостата, который служит для задания определенной температуры в процессе исследования ТП. В термостате находятся три ИП с различными статическими характеристиками.

 

На передней панели макета имеются:

- ручка для задания температуры в термостате;

- индикатор, фиксирует температуру в термостате в ОС;

 

Исследованию подлежат следующие типы тепловых измерительных преобразователей:

1. ТСМ 1 (терморезисторный преобразователь медный;

2. ТСП 1 (терморезисторный преобразователь платиновый);

3. Полупроводниковый ТС (термистор).

Общие теоретические сведения об ИП температуры

 

Для измерения температуры применяются разнообразные ИП. Одной из наиболее обширных и распространённых групп являются терморезисторы.

Терморезисторы – это ИП температуры в изменении активного сопротивления. Применяются металлические и полупроводниковые ИП. Металлические терморезисторы обладают положительным температурным коэффициентом сопротивления (ТКС), колеблющимся от 0,35 до 0,7% на один градус изменения температуры. Для изготовления терморезисторов применяются металлы, обладающие высокой стабильностью ТКС, инертностью к воздействию окружающей среды. Это платина, медь, никель. Платиновые терморезисторы используются в диапазоне температур от –200 до +600О С. Сопротивление платиновых терморезисторов выражается соотношениями:

- в диапазоне от 00С до + 6500С: Rt=R0(1+At+B(t)2);

- в диапазоне от – 2000С до 00С: Rt=R0(1+At+B(t)2+C(t –100)3);

где R0 – сопротивление при 00 С;

А, В, С – коэффициенты, определяемые свойствами металла.

Медные терморезисторы применяются в диапазоне от – 60 ОС до 180 ОС. При расчёте сопротивления медных ТП можно пользоваться соотношением:

Rt=R0(1+ α t), где α - ТКС меди.

Свойства платиновых ТП отличаются высокой стабильностью, они обладают химической инертностью к изменяемой среде. Медные ТП имеют линейную зависимость Rt= f(t), при t свыше 2000С медь окисляется.

Промышленные терморезисторы (термометры сопротивления) выпускаются в двух типов: ТСП – термосопротивления платиновые и ТСМ – термосопротивления медные. Никелевые ТП серийно не выпускаются, т.к. характеристика их R= f(t) свыше 100ОС нелинейная и неоднозначная.

Металлические термометры сопротивлений являются одним из наиболее точных преобразователей температуры. Так, например, платиновые терморезисторы позволяют измерять температуру с погрешностью порядка 0,001 ОС.

Конструктивно промышленные термометры сопротивления выпускаются в виде чувствительных элементов, помещённых в защитный корпус. Чувствительный элемент изготавливается в виде спирали из платиновой или медной проволоки, закреплённой на слюдяном или платиновом каркасе.

Полупроводниковые терморезисторы (ПТР) отличаются от металлических меньшими габаритами большими значениями ТКС.

ТКС у ПТР отрицателен, температурная зависимость описывается формулами:

Rt=Ae b/T

где Т – абсолютная температура; А, b - коэффициенты, или

где R1 – сопротивление термистора при температуре Т1.

Точность измерения температуры с помощью ПТР может быть достаточно высокой (погрешность порядка 0,01К). С помощью разного типа ПТР можно измерять температуру в диапазоне от –200 ОС до1000 ОС.

Недостатки ПТР – нелинейность зависимости RT = f(T) и значительный разброс параметров от образца к образцу (плохая взаимозаменяемость).

Нелинейность характеристики и технологический разброс параметров терморезисторов затрудняет получение линейных шкал термометров. Чтобы улучшить линейность и обеспечить взаимозаменяемость терморезисторов, необходимых при массовом производстве термометров, приходится применять специальные схемы линеаризации и унификации.

Для измерения температуры применяется также другие виды полупроводниковых преобразователей. В частности, термодиоды, термотранзисторы, стабилитроны, работающие в диапазоне от – 80 ОС до+150 ОС на основе открытых и закрытых p – n переходов. Например, при заданном токе, напряжение на открытом переходе или стабилитроне линейно изменяется с температурой, причём ТКС для открытого p – n перехода отрицателен и составляет 243 мВ/К, а для стабилитрона – положителен и достигает 8 мВ/ К.

Достоинством термодиодов и терморезисторов являются малые габариты, возможность взаимозаменяемости и, главное, дешевизна, позволяющая широко применять их в датчиках.




<== предыдущая лекция | следующая лекция ==>
Порядок выполнения работы. 3.1. Изучить лабораторную установку и входящие в ее состав объекты измерения температуры; объекты исследования (тепловые ИП). | 

Дата добавления: 2015-08-27; просмотров: 530. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия