Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Рояля.





Пусть функция у=f(x) удолетворяет следующим условиям:

1. неприрывна на отрезке [а;в]

2. диференцируемая на интервале (а;в)

3. на концах отрезка принимает равные значения

Теорема Лагранжа.

Пусть функция у=f(x) удолетворяет следующим условиям:

1. неприрывная на отрезке [а;в]

2. диференцируема на интервале (а;в)

Тогда внутри отрезка существует по крайне мере одна такая точка ξ;принадлеж. (а;в) в которой производная=частному от аргумента на этом отрезке.

Теорема Коши. Правило Лопиталя.

Теорема Коши

Пусть функция f(x) и h(x) неприрывна на отрезке [а;в],дифференцируема в интервале (а;в),причем f`(x)не =0,в(а;в).Тогда найдется такая точка ξ;из (а;в). Для которой выполняется равенство

f(b)-f(a): h(b)-h(a)=f`(ξ):h`(ξ)

Правило Лопиталя- теорема утверждает что при некоторых условиях предел отношения функций равен пределу отношения их производных.

15. Возврастание и убывание функции. Исследование возрастание и убывания функции с помощью производной.

Возврастание и убывание функции.

Функция у=f`(x) называется возврастающей (убывающейся)на промежутке х,если для любых х1 и х2,причем х2>х1,верно неравенство :f(х2)>f(x1) и f(x2)<f(x1).

Исследование возрастание и убывания функции с помощью производной.

Достаточное условие возврастания функции.

-если производная дифференцируемой функции положительная внутри,некоторого промежутка Х,то она возврастает на этом промежутке

Достаточное условие убывание функции.

- еслипроизводная дифференцируемой функции отрицательная внутри некоторого промежутка Х,то она убывает на этом промежутке

Экстримум функции. Необходимое условие экстримума. Достаточное условия экстримума.

Экстримум функции

Точка х0 называется точкаой мах функции f(x),если в некоторой окресности точка х0 выполняется неравенство f(x)≤f(x0)

Точка х, называется точной мин функции f(x),если в некоторой окрестности точки х,выполняется неравенство f(x)≥f(x1)

Необходимое условие экстримума.

Для того чтобы функция у=f(x) имела экстримум в точке х0,необходимо,чтобы ее производная в этой точке равнялось 0 (f`(x0)=0 или не существует.

Достаточное условия экстримума.

1.Первое достаточное условие экстримума. Если при переходе через точку х0,производная меняет свой знак с + на -,то точка х0,точка мах

2.Второе достаточное условие экстримума. Если первая производная f`(x) дважды дифференцируемой функции =0 в некоторой точке х0, а вторая производная в этой точке f``(x0) положительна,то х0 точка мин функции f`(x),если f``(x0) отрицательна то х0 точка мах.

Формулы Тейлора и Маклорена.

Выпуклость графика функции.Исследование выпуклости с помощью второй производной. Точки перегиба.

Выпуклость графика функции.

-Функция у=f(x)наз. выпуклой вниз на промежутке Х,если для любых двух значения х х1,х2 принадлеж ,из этого промежутка выполняется неравенство: f(x1+x2:2)≤f(x1)+(x2)):2

-Функция называется выпуклой вверх на промежутке Х,если для любых х1,х2 принадл. Х из этого промежутка выполняется неравенство: f(x1+x2:2)≥(f(x1)+f(x2)):2

Исследование выпуклости с помощью второй производной. Если вторая производная дважды дифференцируемой функции положительной (отрицательной)внутри некоторого промежутка Х,то функция выполнена возвр.(убыв.)на этом промежутке.

Точки перегиба

Точкой перегиба графика неприрывной функции называется точка разделяющяя интервалы в которых функция выпукла вверх и вниз.

Необходимое условие перегиба(теорема) Вторая производная f``(х) дважды дифференцируемой функции в точке перегиба х0=0,т.е.f``(x)=0

Достаточное условие перегиба (теорема) Если вторая производная f``(х) дважды дифференцируемой функции при переходе через некоторую точку х0 меняет знак,то х0 есть точка перегиба ее графика.

Асимптоты.Общяя схема исследования функций.

Асимптотой графика функции у=f(x) называется прямая,обладающяя теми свойствами,что расстояние от точки (х,f(x)) до этой прямой стримится к 0,при неограниченному удалении точки графика от начала координат.

Бывают:

-вертикальная

-горизонтальная

-наклонная







Дата добавления: 2015-08-27; просмотров: 1315. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия